Structural mechanics

Analysis of local current density, temperature, and mechanical pressure distributions in an operating PEMFC under variable compression

Published on - Applied Energy

Authors: El Mahdi Khetabi, Khadidja Bouziane, Xavier François, Remy Lachat, Yann Meyer, Denis Candusso

This article investigates the impact of mechanical compression on local phenomena within an operating PEMFC with a large active area (225 cm2). It explores the distributions of current density, temperature, and mechanical pressure, building on previous global characterisations (cell voltage, polarisation curves, and EIS). The study finds that mechanical compression (0.35–1.55 MPa) enhances the uniformity of current density and temperature distribution, reducing the risk of hotspots that can impair PEMFC performance and durability. The spatial analysis reveals that this homogenisation effect is mainly due to improved pressure distribution with increased compression. The regions with higher mechanical pressure correlate with higher local current density and temperature, which improves performance by reducing ohmic resistance. However, excessive compression at high current density and relative humidity can lead to water management issues. Overall, the results support the positive effect of pressure homogenisation on PEMFC performance, as observed in previous studies.