Engineering Sciences
Avionic Piezoelectric Deicing System: Numerical and Experimental Investigation of the Use of Extension Modes for Deicing
Published on - International Conference on More Electric Aircraft
A proof of the concept of utilizing lightweight piezoelectric actuators for deicing aircraft’s leading edges with minimal power needs is proposed. This type of deicing applies vibration to the structure by activating its own resonant frequencies to generate sufficient stress to break the ice and detach it from the substrate. The deicing mechanism depends strongly on the chosen excitation mode, whether it's flexural (bending) mode, extension (stretching) mode, or a combination in between, hence affecting the efficiency and effectiveness of the deicing process. Using extensional modes generates shear stresses at the interface leading edge/ice great enough to delaminate the ice. Deicing was demonstrated with a power input density of 0.074 W/cm² and a surface ratio of 0.07 piezoelectric actuators per cm². First, a numerical method for positioning piezoelectric actuators and choosing the proper resonance mode was validated to assist in the system’s design. Then, the numerical method was used to implement piezoelectric deicing on a more representative structure of an aircraft wing or nacelle. Finally, a converter topology adapted for deicing application was proposed.