Other
Study of cell membrane permeabilization induced by pulsed electric field – electrical modeling and characterization on biochip
Publié le
The increasing interest for new methodologies based on the use of the electric field to characterize the cells or tissue cells and generate brought promising development in research laboratories and industry: cancer diagnosis, electrochemotherapy (insertion of a drug after cell membranes permeabilization), gene therapy (insertion of a therapeutic gene), immunotherapy (anti-tumor vaccines obtained by electrofusion of dendritic cells and cancer cells to activate the immune system).The application of electrical pulses to cells or cell tissues induces a change in their properties, in particular on their membranes which become transiently permeable, and temporarily allow the passage of ions and macromolecules. Effect linked to the permeabilization phenomenon have been partially characterized by epi-fluorescence microscopy. Nevertheless, in order to perform the real-time monitoring of the electroporation process and know its dynamics, the electrical sample characterization is employed. Thus the aim of this work is to implement a real-time monitoring of dielectrical characteristics changes, on a wide frequency range, of a cellular tissue or a single cell, before, during and after the pulsed electric field application.As part of my thesis a model of the biological system has been developed to better describe the phenomena observed experimentally: effect of electrical stress on cell viability, on the permeability of the outer membrane, induced effects on the intracellular compounds, dynamics of membrane fusion.The degree of permeabilization of the biological sample (cells or tissues) is non linearly dependent of several parameters, which makes complicated the development of the model and its interpretation.The detection of a specific level of permeabilization is done in real time (measure of the level of permeabilization before, during and after the electric pulses application). This cell permeabilization level control could eventually be parallelized on a chip dedicated to the electroporation of a large number of cells. The latter can be used to optimize the electric pulses parameters in order to reach the desired permeabilization level. In order to have a multi-scale overview of the phenomenon, the study was performed on different size-level: from the tissue level (millimeter scale) to the single cell model through the intermediate scales (cell spéroides characterization).In the latter two cases (spheroid, single cell) the biological sample is isolated in a microfluidic biochip where the electric field solicitation are applied (micrometer scale).The microdevice designed and fabricated during this work, allows the real time characterization of the cell permeabilization. Furthermore the miniaturization of the system is crucial to work at the level of the single cell, and make possible the application of electrical fields of high amplitude, high frequency and spatially localized.