Material chemistry
Polyanionic Molybdate Powders as Promising Electrode Materials Based on NASICON Fe2(MoO4)3 Networks
Publié le - 4th International Conference on Multidisciplinary Sciences (MOL2NET 2018)
In this paper, Fe2(MoO4)3 (FMO) powders have been synthesized via an easy precipitation approach. The microstructural properties of the synthesized product were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Two FMO samples, 1 and 2, were synthetized using two reactants, sodium molybdate and ammonium heptamolybdate, respectively. In both cases, pure monoclinic structure with space group P2/a has been identified, via XRD measurements. The crystallite sizes, estimated from Scherer’s formula, are of (38 ± 2) and (46 ± 4) nm according to the precursor used. Besides, the sample 1 showed a relatively larger specific surface area of 42.77 m2/g, than the sample 2 with 35.28 m2/g. The EDS microanalysis confirms the stoichiometric amount of the chemical elements. The SEM micrographs reveal a regular distribution of particles shape that presented grain size of order of (192±52) nm for sample 1. While, the sample 2 presents grains of (215±59) nm size, with a less regular shape.