Optimization and Control

Non-heuristic reduction of the graph in graph-cut optimization

Publié le - NCMIP

Auteurs : François Malgouyres, Nicolas Lermé

During the last ten years, graph cuts had a growing impact in shape optimization. In particular, they are commonly used in applications of shape optimization such as image processing, computer vision and computer graphics. Their success is due to their ability to efficiently solve (apparently) difficult shape optimization problems which typically involve the perimeter of the shape. Nevertheless, solving problems with a large number of variables remains computationally expensive and requires a high memory usage since underlying graphs sometimes involve billion of nodes and even more edges. Several strategies have been proposed in the literature to improve graph-cuts in this regards. In this paper, we give a formal statement which expresses that a simple and local test performed on every node before its construction permits to avoid the construction of useless nodes for the graphs typically encountered in image processing and vision. A useless node is such that the value of the maximum flow in the graph does not change when removing the node from the graph. Such a test therefore permits to limit the construction of the graph to a band of useful nodes surrounding the final cut.