Other

Impacts des modèles de pertes sur l’optimisation sur cycle d’un ensemble convertisseur – machine synchrone : applications aux véhicules hybrides

Publié le

Auteurs : Phi-Hung Nguyen

Almost all studies of permanent magnet synchronous machines (PMSM) for for hybrid vehicle applications relate to their performances on a specific point of a driving cycle of the vehicle (the base point, the point at high speed or the most used point). However, these machines often operate at different torques and at different speeds. This thesis studies therefore PMSM performances in order to optimize during an entire driving cycle. In this thesis, the author contributed to develop models of torque, field weakening, copper losses and iron losses and methods of calculating these losses at no-load and at load for four MSAP (three concentrated flux machine and a surface mounted PMSM) and for three driving cycles (New Eurepean Driving Cycle, Artemis-Urban and Artemis-Road). An experimental validation of these models was realized on a test bench with two prototypes of MSAP. Then, the MSAP were sized for a minimization of average power losses during the cycle and of the RMS current at the base point. This combination is designed to increase the efficiency of the electrical machine and minimize the size of the associated voltage inverter. This problem of multi-objective optimization was performed using the genetic algorithm, Non-Dominated Sorting Genetic Algorithm (NSGA-II). Thus, a Pareto front of optimal solutions can be derived. The impacts of loss models (at no-load and at load) on the PMSM optimization during the cycle are studied and the interest of each model is presented. Models and calculation methods proposed in this thesis can be applied to all cycles, at different MSAP and for other applications.