Electric power

Gestion et dimensionnement d'une flotte de véhicules électriques associée à une centrale photovoltaïque : co-optimisation stochastique et distribuée

Publié le

Auteurs : Roman Le Goff Latimier

Simultaneous development of flexible electricity consumers and of intermittent renewable producers calls for using their complementarities. It could foster their overall integration in power systems. For the purpose of this doctoral thesis, the collaboration between an electric vehicle fleet and a photovoltaic plant is studied. First of all, a generic problem is set up to improve the predictability of the power exchange between the power grid and the so called collaboratif system. It should therefore fulfill a commitment profile constraint. The intraday management of this system consists in an optimisation problem which objective is to mitigate the production forecast errors by charging power flexibility. This is a multitime step problem, because of the battery intertia. The random availibility of vehicles and the forecast errors also make it stochastic. Finally there is a huge number of variables as it is spread other an entiere fleet.Upstream of the problem resolution, the modeling of the dynamic behaviour and of the aging of Lithium Ion batteries is discussed. It results in a range of compromises between precision, impact on the final decision and computational cost. Furthermore, a hidden Markov model is proposed and developped so as to handle temporal structures of the forecast error of the photovoltaic production. This analysis is based on production data of a real plant and on associated forecasts.An electric vehicle fleet is considered as an equivalent agregated battery. Its optimal charging power is sorted out using stochastic dynamic programming. The sensitivity of the resulting management strategies is assessed against the models which describe the production forecast error or battery behaviour. The battery aging is rendered by several models which we discuss the consequences over the optimal sizing of an electric vehicle fleet regarding to the plant power.Then the optimal charing power for each one of the vehicles among a fleet is deduced using a sharing problem. The resolution is carried out using distributed optimisation --- Alternating Direction Method of Multipliers --- and dynamic programming. A specific attention is devoted to the individual mobility priorities of the vehicles users. The vehicle charging power is thus differenticiated according to each one preferences. We also investigate a situation where information exchanges are limited. The optimal sizing of an electric vehicle fleet associated with a photovoltaic plant is finaly considered under several possibilities of economic model. The coupling between sizing and daily management is tackled thanks to a co-optimization.