Other

Estimation robuste de la matrice de covariance en traitement du signal

Publié le

Auteurs : Mélanie Mahot

In many signal processing applications, the covariance matrix of the received data must be known. If unknown, it is firstly estimated with some training data. Classically, the background is considered as Gaussian. In such a case, the maximum likelihood estimator is the Sample Covariance Matrix (SCM). However, due to high resolution methods or other new technics, the Gaussian assumption is not valid anymore. Moreover, even when the data are Gaussian, the SCM can be strongly influenced by some disturbances such as missing data and/or outliers. In this thesis, we use a more general model which encompasses a large panel of distributions: the elliptical distributions. Many campagns of measurement have shown that this model leads to a better modelling of the data. In this context, we present more robust and adapted estimators: the M-estimators and Fixed Point Estimator (FPE). Their properties are derived in terms of performance and robustness, and they are compared to the SCM. We show that these estimators can be used instead of the SCM with nearly the same performance when the data are Gaussian, and better performance when the data are non-Gaussian. Theoretical results are emphasized on simulations and on real data in a context of Space Time Adaptive Processing.