Machine Learning

Ensemble Methods for Pedestrian Detection in Dense Crowds

Publié le

Auteurs : Jennifer Vandoni

This study deals with pedestrian detection in high- density crowds from a mono-camera system. The detections can be then used both to obtain robust density estimation, and to initialize a tracking algorithm. One of the most difficult challenges is that usual pedestrian detection methodologies do not scale well to high-density crowds, for reasons such as absence of background, high visual homogeneity, small size of the objects, and heavy occlusions. We cast the detection problem as a Multiple Classifier System (MCS), composed by two different ensembles of classifiers, the first one based on SVM (SVM-ensemble) and the second one based on CNN (CNN-ensemble), combined relying on the Belief Function Theory (BFT) to exploit their strengths for pixel-wise classification. SVM-ensemble is composed by several SVM detectors based on different gradient, texture and orientation descriptors, able to tackle the problem from different perspectives. BFT allows us to take into account the imprecision in addition to the uncertainty value provided by each classifier, which we consider coming from possible errors in the calibration procedure and from pixel neighbor's heterogeneity in the image space. However, scarcity of labeled data for specific dense crowd contexts reflects in the impossibility to obtain robust training and validation sets. By exploiting belief functions directly derived from the classifiers' combination, we propose an evidential Query-by-Committee (QBC) active learning algorithm to automatically select the most informative training samples. On the other side, we explore deep learning techniques by casting the problem as a segmentation task with soft labels, with a fully convolutional network designed to recover small objects thanks to a tailored use of dilated convolutions. In order to obtain a pixel-wise measure of reliability about the network's predictions, we create a CNN- ensemble by means of dropout at inference time, and we combine the different obtained realizations in the context of BFT. Finally, we show that the output map given by the MCS can be employed to perform people counting. We propose an evaluation method that can be applied at every scale, providing also uncertainty bounds on the estimated density.