Physics

Engineering the physical properties and photocatalytic activities of a β-ketoenamine COF using continuous flow synthesis

Publié le - Chemosphere

Auteurs : Astha Singh, Rituporn Gogoi, Kajal Sharma, Swadhin Kumar Jena, Rajesh Kumar, Najla Fourati, Chouki Zerrouki, Samy Remita, Prem Felix Siril

Covalent Organic Frameworks (COF) having conjugated backbone are an interesting class of metal-free, visible light active, heterogeneous photocatalysts. Interestingly, synthesis of COF using continuous flow process has emerged as an efficient, alternative method when compared to the traditional batch process. Here, we demonstrate the possibility to engineer the physical properties and hence the adsorption and catalytic activities of a β-ketoenamine COF by varying monomer flow rate and microreactor design during the continuous flow synthesis. Crystallinity of the COF increases on varying the monomer flow rate from 100 (S-100) to 500 (S-500) and up to 1000 μLmin-1 (S-1000), in an S-shaped microreactor, resulting in an enhanced surface area: 525, 722 and 1119 m2g-1 respectively. The photophysical properties of the COF are also found to vary significantly with the change in flow synthesis conditions. On the one hand, S-1000 is characterized by the highest adsorption of MB, due to its high surface area and accessible pores. On the other hand, S-500 shows the highest photocurrent, a low recombination of photogenerated charges and the lowest charge transfer resistance. Thus, S-500 is found to be the best photocatalyst for the removal of a model pollutant (methylene blue, MB). Further, enhanced photocatalytic removal of MB using S-500 could be achieved by performing the photocatalysis in continuous flow.