Other

Développement de comparateur cryogénique de courants très faible bruit pour la métrologie électrique quantique.

Publié le

Auteurs : Florentin Rengnez

In a context of growing need of precision in measuring low currents for national metrology institutes, industry, instrument manufacturers and fundamental physics, study of single-electron tunneling (SET) devices capable of generating a direct current directly proportional to the frequency and the elementary charge, coupled with a high performance current amplifier, the cryogenic current comparator (CCC), becomes relevant to realize a quantum current standard. In this framework, at LNE, study of new SET devices and the development of CCCs continues. In this thesis, an experimental setup was implemented to evaluate the performance of a new CCC, consisting of a new design and 30 000 turns. The experimental results fulfill our goals, whether in terms of current resolution, errors, measurement stability and reproducibility. The CCC developed during the thesis can thus be used to metrologically quantify SET devices. In addition, a model based on an equivalent circuit diagram has been developed to simulate the actual behavior of the CCC, taking into account the magnetic and electrical aspects involved. This simulation allows the quantification of the error due to currents leakage through parasitic capacitances surrounding the windings. Results of the simulation indicate that this error reaches 10 10, which is less, by two orders of magnitude, than the maximum tolerable error: 10 8. Results obtained experimentally and by simulation provide new improvement elements in the design of high ratio CCCs. The developed model, once inserted into an optimization routine, can also be a very useful design tool of CCCs.