Electronics

Contribution à l'étude d'un système de dégivrage piézoélectrique pour l'aéronautique : actionnement vibratoire et alimentation de puissance HF adaptée

Publié le

Auteurs : Modar Jomaa

Environmental constraints and their impact on public opinion have led the aircraft industry to accelerate the energy transition in aeronautics toward a "More Electric Aircraft" (MEA). Therefore, we are witnessing a gradual increase in the role of electrical energy in onboard applications. This electrification trend aims to replace all non-propulsive systems (hydraulic and pneumatic) with electromechanical alternatives in order to optimize aircraft performance, decrease operating and maintenance costs, increase dispatch reliability, and reduce gas emissions. Among the systems affected by this transition is the deicing system. The deicing system is a prime candidate for this transition.Ice accumulation on aircraft has been recognized as a major risk in aviation since the early 20th century. Currently employed in-flight solutions, such as hot air flow, pneumatic boots, electrothermal systems, chemical fluid, or impulsive/expulsive electromechanical systems, offer varying degrees of effectiveness but come with drawbacks such as significant energy consumption, bulkiness, or limited applicability to certain aircraft types. Furthermore, within the context of more electric aircraft, systems dependent on thermal engines are most likely to become obsolete, paving the way for new electrical systems.The electromechanical piezoelectric ice protection system has recently proven to be relevant in terms of energy consumption and integration and is the focus of this thesis. It concentrates on the design of a resonant piezoelectric deicing system and its associated power supply. This system relies on the use of piezoelectric actuators to excite the structure to be deiced at a given frequency. When this frequency matches the natural frequencies of the structure, the magnitude of vibration increases, generating high levels of stress and deformation, eventually exceeding the critical strengths of the ice (traction/compression, adhesion, or both).The objective of this thesis is to develop, initially, a prototype capable of demonstrating efficient and rapid ice protection with minimal energy consumption. To achieve this, a methodology for positioning and controlling the actuators is proposed, utilizing analytical and modal finite element analysis to identify the most contributing resonance modes to deicing. Experimental validation through several stages is ensured to obtain an operational deicing prototype.Subsequently, emphasis is placed on the development of a power supply tailored to piezoelectric actuators for deicing purposes. Given the dependence of the electrical behavior of actuators on mechanical load and temperature, certain aspects must be considered when designing the electrical power supply. An exhaustive literature search is conducted to identify suitable topologies for driving piezoelectric loads, leading to the proposal of the ARCPI-LLCC topology. The latter offers significant advantages in terms of overall system performance, particularly in reactive energy compensation and harmonic distortion reduction.Finally, the ARCPI-LLCC is employed to drive the deicing prototype designed according to the proposed methodology. The results demonstrate operational deicing with optimized efficiency, thus validating the effectiveness of piezoelectric deicing technology in the context of aircraft electrification.