Microbiology and Parasitology
Activity Monitoring of Functional OprM Using a Biomimetic Microfluidic Device
Publié le - Analyst
This paper describes the fabrication and use of a biomimetic microfluidic device for the monitoring of a functional porin reconstituted within miniaturized suspended artificial bilayer lipid membrane (BLM). Such a microfluidic device allows for 1) fluidic and electrical access to both sides of the BLM, 2) reproducible membrane protein insertion and long-term electrical monitoring of its conductance (Gi), thanks to the miniaturization of the BLM. We demonstrate here for the first time the feasibility to insert a large trans-membrane protein through its β-barrel, and monitor its functional activity during more than 1 hour (limited by buffer evaporation). In this paper, we specifically used our device for the monitoring of OprM, a bacterial efflux channel involved in the multidrug resistance of the bacteria Pseudomonas aeruginosa. Sub-steps of the OprM channel conductance were detected during the electrical recordings within our device, which might be due to oscillations between several structural conformations (sub-states) adopted by the protein, as part of its opening mechanism. This work is a first step towards the establishing of a genuine platform dedicated to the investigation of bacterial proteins under reconstituted conditions, a very promising tool for the screening of new inhibitors against bacterial channels involved in drug resistance.