Rapport d'activité 2008-2013

Bilan et projet

Systèmes et Applications des Technologies de l'Information et de l'Energie
SATIE UMR CNRS 8029
Dossier d'évaluation de l’unité de recherche SATIE
Vague E : campagne d'évaluation 2013-2014

Nom de l’unité : Systèmes et Applications des Technologies de l’Information et de l’Energie
Acronyme : SATIE
Nom du directeur pour le contrat en cours : Pascal LARZABAL
Nom du directeur pour le contrat à venir : Pascal LARZABAL

Type de demande :
- Renouvellement à l'identique □
- Restructuration ☑
- Création ex nihilo □

Choix de l'évaluation interdisciplinaire de l’unité de recherche :
- Oui □
- Non ☑

Dossier d'évaluation incluant l’unité de recherche suivante

Nom de l’unité : Laboratoire des Technologies Nouvelles
Acronyme : LTN
Nom du directeur pour le contrat en cours : Z. Khatir
Nom du directeur pour le contrat à venir : P. Larzabal

Type de demande :
- Renouvellement à l'identique □
- Restructuration ☒
- Création ex nihilo □

Choix de l'évaluation interdisciplinaire de l’unité de recherche :
- Oui □
- Non ☒
Dossier d'évaluation : Sommaire

PARTIE A - BILAN DU LABORATOIRE SATIE ... 1
A 1. PRESENTATION DE SATIE .. 1
A 1.1. POLITIQUE SCIENTIFIQUE DU LABORATOIRE ... 2
A 1.1.a. Missions et objectifs scientifiques ... 2
A 1.1.b. Organisation du laboratoire ... 2
A 1.1.c. Stratégie d'insertion dans la communauté scientifique 3
A 2. PROFIL D’ACTIVITES ET BILANS ... 7
A 2.1. BILAN DE LA PRODUCTION DU LABORATOIRE .. 7
A 2.2. RAYONNEMENT ET ATTRACTIVITE ACADÉMIQUES 8
A 3. ORGANISATION ET VIE DE L’UNITÉ ... 8
A 3.1. LA GESTION ADMINISTRATIVE ... 10
A 3.2. GESTION DES RESSOURCES HUMAINES .. 10
A 3.3. ARRIVÉES ET DEPARTS ... 10
A 4. PRESENTATION DU POLE COMPOSANTS ET SYSTEMES POUR L’ENERGIE ELECTRIQUE (CSEE). ... 11
A 4.1. POLITIQUE SCIENTIFIQUE ET STRUCTURATION DU POLE 11
A 4.1.a. Groupe EPI « Electronique de puissance et intégration » 12
A 4.1.b. Groupe MME « Matériaux Magnétiques pour l’énergie » 15
A 4.1.c. Groupe SETE : « Systèmes d’Energie pour les Transports et l’Environnement » ... 16
A 4.2. LES PERSONNELS DU POLE CSEE ... 18
A 4.2.a. Les personnels permanents .. 18
A 4.2.b. Les personnels non permanents .. 19
A 4.3. FAITS MARQUANTS DU POLE .. 21
A 4.3.a. Faits marquants scientifiques ... 21
A 4.3.b. Partenariats marquants ... 21
A 4.3.c. Rayonnement : .. 21
A 4.3.d. Récompenses distinctions : ... 21
A 4.4. REALISATIONS DU POLE ... 21
A 4.4.a. Production scientifique ... 21
A 4.4.b. Interactions avec l’environnement social, économique et culturel 22
A 5. PRESENTATION DU POLE SYSTEMES D’INFORMATION ET D’ANALYSE MULTI-ECHELLES (SIAME) ... 24
A 5.1. POLITIQUE SCIENTIFIQUE ET STRUCTURATION DU POLE 24
A 5.1.a. Groupe Méthodes et Outils pour les Signaux et Systèmes (MOSS) 25
A 5.1.b. Groupe Instrumentation et Imagerie .. 28
A 5.1.c. Groupe BIO-Microsystèmes et bioSensors (BIOMIS) 31
A 5.2. ORGANISATION DU POLE SIAME .. 34
A 5.2.a. Les personnels permanents ... 34
A 5.2.b. Les personnels non permanents .. 35
A 5.2.c. Les moyens financiers .. 36
A 5.3. FAITS MARQUANTS DU POLE .. 36
A 5.3.a. Création en 2009 de la start-up CyToCap .. 36
A 5.3.b. Logiciel d’interface utilisateur pour programmes scientifiques 36
A 5.3.c. Création du Collège Universitaire Franco-Brésilien Santos Dumont 37
A 5.3.d. Créations de plateformes d’innovation fédératives 37
A 5.4. REALISATIONS DU POLE ... 38
A 5.4.a. Production scientifique ... 38
A 5.4.b. Interactions avec l’environnement social, économique et culturel 39
A 6. IMPLICATION DU LABORATOIRE SATIE DANS LA FORMATION PAR LA RECHERCHE 40
PARTIE B - BILAN DU LTN ... 44
B 1. PRESENTATION DE L'UNITE .. 44
 B 1.1. PRESENTATION GENERALE, HISTORIQUE 44
 B 1.2. MISSIONS .. 44
 B 1.3. POLITIQUE SCIENTIFIQUE .. 44
 B 1.3.a. La fiabilité des composants actifs de puissance haute température et haute tension 45
 B 1.3.b. Le stockage de l'énergie électrique pour les systèmes de transports ... 47
 B 1.3.c. L'intégration et l'interface systèmes des générateurs à pile à combustible (PAC) 47
 B 1.3.d. Les applications et aspects systèmes .. 49
B 2. POSITIONNEMENT REGIONAL, NATIONAL ET INTERNATIONAL ... 50
 B 2.1.a. au niveau régional .. 50
 B 2.1.b. au niveau national .. 50
 B 2.1.c. au niveau international ... 50
B 3. PROFIL D'ACTIVITES ... 50
B 4. ORGANISATION ET VIE DE L'UNITE .. 51
 B 4.1. EVOLUTION DES EFFECTIFS ... 51
 B 4.1.a. Personnels permanents .. 51
 B 4.1.b. Personnels non permanents .. 51
 B 4.2. EVOLUTION DES MOYENS .. 52
 B 4.3. ORGANISATION ADMINISTRATIVE DE L'UNITE 53
 B 4.4. ORGANISATION SCIENTIFIQUE DE L'UNITE 53
 B 4.5. VIE DE L'UNITE ... 53
 B 4.5.a. Conseil de laboratoire .. 53
 B 4.5.b. Animation scientifique .. 53
 B 4.5.c. Réunions de projets ... 53
 B 4.5.d. Revues de direction ... 54
 B 4.5.e. Ressources mutualisées ... 54
 B 4.5.f. Accueil des nouveaux arrivants 54
 B 4.5.g. Entretiens individuels des personnels ITA 54
B 5. FAITS MARQUANTS ... 54
B 6. REALISATIONS ... 55
 B 6.1. PRODUCTION SCIENTIFIQUE ... 55
 B 6.2. RAYONNEMENT ET ATTRACTIVITE ACADEMIQUES 55
 B 6.2.a. Participations à des projets collaboratifs nationaux et internationaux .. 55
 B 6.2.b. Collaborations les plus suivies avec d'autres laboratoires ... 56
 B 6.2.c. Participations à des instances de pilotage de la recherche ... 56
 B 6.2.d. Réseaux scientifiques .. 56
 B 6.2.e. Structures d'animation de la recherche et d'évaluation ... 56
 B 6.2.f. Comités scientifiques de grandes conférences 56
 B 6.2.g. Comité de standardisation international 57
 B 6.2.h. Participation à l'expertise de projets régional/national/international .. 57
 B 6.2.i. Organisation de manifestations scientifiques 57
 B 6.2.j. Participation à des jurys de thèses et HDR (sur la période) ... 57
 B 6.3. INTERACTIONS AVEC L'ENVIRONNEMENT SOCIAL, ECONOMIQUE ET CULTUREL 57
B 7. IMPLICATION DE L'UNITE DANS LA FORMATION PAR LA RECHERCHE .. 58
 B 7.1. ECOLE DOCTORALE .. 58
 B 7.2. IMPLICATION DANS L'ENSEIGNEMENT NIVEAU MASTER ... 59
PARTIE C - PROJET DU LABORATOIRE SATIE ... 60
C 1. STRATEGIE ET PERSPECTIVES SCIENTIFIQUES POUR LE FUTUR CONTRAT 60
 C 1.1. POLITIQUE ET STRATEGIE GENERALE 60
 C 1.2. LE PROJET DECLENE AU TRAVERS D'ACTIONS ... 61
 C 1.2.a. Dans le pôle CSEE ... 61
 C 1.2.b. Dans le pôle SIAME .. 65
C 2. GESTION PREVISIONNELLE DES EMPLOIS SATIE ... 68
 C 2.1.a. Stratégie générale de l'unité de recherche : ... 68
 C 2.1.b. Besoins de l'unité .. 69
C 3. ANALYSE SWOT .. 70

PARTIE D - ANNEXES DE SATIE ... C 3-1
D 1. ANNEXE 1 : PRESENTATION SYNTHETIQUE .. D 1-1
 D 1.1. PRESENTATION SYNTHETIQUE DU POLE CSEE .. D 1-1
 D 1.2. PRESENTATION SYNTHETIQUE DU POLE SIAME ... D 1-4
D 2. ANNEXE 2 : LETTRE DE MISSION CONTRACTUELLE .. D 2-6
D 3. ANNEXE 3 : ÉQUIPEMENTS LOURDS .. D 3-6
D 4. ANNEXE 4 : ORGANIGRAMME DE SATIE ... D 4-6
D 5. ANNEXE 5 : REGLEMENT INTERIEUR DE SATIE ... D 5-7
D 6. ANNEXE 6 : LISTE DES REALISATIONS DE SATIE ... D 6-26
 D 6.1. REALISATIONS DU POLE CSEE .. D 6-26
 D 6.2. REALISATIONS DU POLE SIAME .. D 6-59
D 7. ANNEXE 7 : LISTE DES THESE ... D 7-94
D 8. ANNEXE 8 : EVALUATION DES RISQUES .. D 8-105
D 9. ANNEXE 9 : LISTE DES PERSONNELS ... D 9-110

PARTIE E - ANNEXES DU LTN .. D 9-114
E 1. ANNEXE 1 : PRESENTATION SYNTHETIQUE (EXECUTIVE SUMMARY) E 1-114
E 2. ANNEXE 3 : ÉQUIPEMENTS LOURDS... E 2-116
E 3. ANNEXE 4 : ORGANIGRAMME FONCTIONNEL ... E 3-117
E 4. ANNEXE 5 : REGLEMENT INTERIEUR DU LTN ... E 4-118
E 5. ANNEXE 6 : REALISATIONS A PARTIR DU 01/12/2010 ... E 5-123
E 6. ANNEXE 7 : LISTE DES THESE .. E 6-130
E 8. ANNEXE 8 : DOCUMENT UNIQUE D’EVALUATION DES RISQUES E 8-131
E 9. ANNEXE 9 : LISTE DES PERSONNELS ... E 9-131

PARTIE F - ANNEXES PROSPECTIVE D’INTEGRATION D’ACCI.. E 9-132
F 1. DECISION DU CONSEIL DE LABORATOIRE ... F 1-132
F 2. ÉLEMENTS DE PROSPECTIVE COMMUNE POUR UNE DEMARCHE D’INTEGRATION A SATIE.................. F 2-133
Partie A - Bilan du laboratoire SATIE

A 1. Présentation de SATIE

Le laboratoire SATIE est un laboratoire de recherche en sciences appliquées, qui se consacre aux \textit{systèmes et applications des technologies de l'information et de l'énergie}, dirigé par Pascal Larzabal, professeur à l'Université Paris-Sud. C'est une unité mixte de recherche du CNRS (UMR 8029) comptant actuellement 170 personnes (90 chercheurs et personnels IATOS plus 80 doctorants et post-doctorants) provenant de l'\textit{Ecole Normale Supérieure de Cachan} (ENS Cachan), du \textit{Centre National de Recherche Scientifique} (CNRS), du \textit{Conservatoire National des Arts et Métiers de Paris} (CNAM), de l'\textit{Université de Cergy-Pontoise} (UCP), de l'IUT de Ville d'Avray, des Universités de Paris-Ouest, Paris-Est Créteil et Paris-Sud et plus récemment de l'\textit{Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux} (IFSTTAR) à travers une équipe conventionnée depuis le 1er janvier 2013. Les champs scientifiques du SATIE sont ceux de l'\textit{electrical engineering et de la physique appliquée, de la physique des systèmes et des biomicrosysstèmes}. Il est rattaché principalement au département INSIS du CNRS et secondairement au département INSII.

\begin{table}[h]
\centering
\begin{tabular}{|c|}
\hline
\textbf{Quelques éléments historiques} \\
\hline
Le laboratoire SATIE, autrefois nommé LESIR (\textit{Laboratoire d'Electricité, Signaux et Robotique}), est né au milieu des années 70, à l'Ecole Normale Supérieure de Cachan (ENS Cachan), sous l'impulsion de Charles Sol. C'est en 2002, qu'il prend son nom actuel de SATIE (\textit{Systèmes et Applications des Technologies de l'Information et de l'Energie}).
\hline
Entre temps, les activités du laboratoire ont en effet évolué de l'énergie électrique, des signaux et de la robotique vers les systèmes d'énergie électrique et les systèmes d'information (au sens systèmes de mesure, de contrôle et de traitement des signaux, incluant les bio-microsysstèmes).
\hline
Des années 2000 à nos jours, le SATIE, qui comporte actuellement 4 tutelles (l'ENS Cachan, le CNRS, le Cnam-Paris et l'Université Cergy Pontoise), a connu une forte croissance, notamment avec l'arrivée en 2009 d'un effectif important d'enseignants chercheurs de l'Université de Cergy Pontoise, de l'IUT de Ville d'Avray et de l'Université de Paris Ouest. Plus récemment, en 2012-2013, un rapprochement s'est également opéré entre le SATIE et le LTN (Laboratoire des Technologies Nouvelles), équipe conventionnée IFSTTAR, avec qui des partenariats existaient de longue date.
\hline

Cette évolution par rapport aux 12 pôles de compétences initiaux qui structuraient le laboratoire jusque-là s'était avérée payante puisque dans cette période, SATIE a connu une véritable amélioration aussi bien qualitative que quantitative de son activité scientifique et de valorisation. Ces progrès avaient été salués par le Comité d'Évaluation de janvier 2009, mais celui-ci avait dans un même temps souligné \textit{i}) un manque de visibilité des thématiques \textit{ii}) une nécessaire restructuration de l'équipe TIM pour maîtriser sa montée en puissance et \textit{iii}) un manque de stratégie scientifique et d'organisation opérationelle de l'équipe BIOMIS Le laboratoire a pris en compte ces observations. Tout en prenant acte du fait qu'il avait retrouvé un bon positionnement et une activité scientifique satisfaisante, il a consulté les chercheurs et organisé une réflexion qui a conduit à la mise en place dans le courant de ce quinquennat d'une organisation en 2 pôles et 7 groupes de recherche qui seront décrits plus loin.
\hline
\end{tabular}
\caption{Quelques éléments historiques}
\end{table}

\begin{table}[h]
\centering
\begin{tabular}{|c|}
\hline
\textbf{Afin d'être opérationnel et efficace dans nos travaux de recherche nous avons décidé de structurer nos activités autour de 2 pôles : le premier relevant de l'instrumentation, du traitement de l'information, et le second de l'énergie électrique et de sa gestion. C'est la synergie des travaux de ces 2 pôles qui nous permet de nous atteler à des projets de recherche ambitieux répondant à des enjeux sociétaux d'importance.}
\hline
\end{tabular}
\caption{Afin d'être opérationnel et efficace dans nos travaux de recherche}
\end{table}
A 1.1. Politique scientifique du laboratoire

A 1.1.a. Missions et objectifs scientifiques

La vocation générale du laboratoire est l'étude des systèmes complexes combinant information et énergie. Nous menons des travaux dans des disciplines fondamentales telles que le génie électrique, la physique, la physique des systèmes et des microsystèmes au service de la modélisation, de la conception et de l'optimisation d'un système d'énergie et/ou d'information. Notre objectif est de concilier les attentes de la société et l'enrichissement de la connaissance. Nous accordons une importance majeure à l'expérimentation associée aux développements théoriques. La récente augmentation en surface de nos plateformes expérimentales témoigne de notre volonté de maintenir l'expérimentation au cœur de nos préoccupations.

A 1.1.b. Organisation du laboratoire

Le laboratoire SATIE est actuellement organisé en deux pôles de recherche forts et identifiés, pour d'une part asseoir notre positionnement scientifique et d'autre part pour mieux traiter les projets pluridisciplinaires dans toutes leurs dimensions :

Le pôle CSEE (Composants et Systèmes pour l'Energie Electrique),
dénommé équipe E1 pour l'évaluation AERES
Responsable : François Costa
(professeur à l'Université de Paris-East Créteil),

Ce pôle développe des activités qui relèvent des systèmes d'énergie électrique, touchant en particulier aux transports, aux énergies renouvelables en intégrant la dimension du développement durable. Ces activités couvrent aussi bien des aspects matériaux pour l'énergie électrique que les composants et systèmes associés.

Effectif en 2013

Ce pôle compte 43 enseignants-chercheurs, chercheurs et personnels IATOS permanents. Il s'organise en quatre groupes de recherche coordonnés et aux thématiques complémentaires :

- EPI (Electronique de Puissance et Intégration),
- MME (Matériaux Magnétiques pour l'Energie),
- SETE (Systèmes d'Energie pour les Transports et l'Environnement)
- TN (Technologies Nouvelles, équipe conventionnée de l'IFSTTAR).

Les pôles CSEE et SIAME travaillent sur des champs disciplinaires bien identifiés au sein des sections 7 et 8 du CNRS, 61 et 63 du CNU et DS8 et 9 du MESR. Il faut noter que le champ applicatif du pôle SIAME touchant également les sciences de la vie justifie la présence de 2 chimistes et d'une biochimiste dans nos rangs. Ces 2 pôles interagissent étroitement via les thématiques de modélisation, d'estimation, d'identification, traversant aussi bien les systèmes d'information que d'énergie.

Le pôle SIAME (Systèmes d'Information et d'Analyse Multi-Echelles),
dénommé équipe E2 pour l'évaluation AERES
Responsable : Stéphane Serfaty
(professeur à l'Université de Cergy-Pontoise),

Ce pôle développe des activités de recherche qui relèvent des systèmes d'information, et qui s'étendent des capteurs et techniques d'imagerie au traitement des signaux et au contrôle de ces systèmes, en passant par leur instrumentation.

Effectif en 2013

Ce pôle compte 28 enseignants-chercheurs, chercheurs et personnels IATOS permanents. Il s'organise en trois groupes de recherche coordonnés et aux thématiques complémentaires :

- MOSS (Méthodes et Outils pour les Signaux et Systèmes),
- II (Instrumentation et Imagerie)
- BIOMIS (Bio-MicroSystèmes et BioSensors),

A ces deux pôles scientifiques s'ajoute un pôle administratif et services communs
(informatique, ateliers mécanique et électronique) comptant 8 personnes. Ce pôle est dénommé équipe E3 pour l'évaluation AERES.

Enfin, d'un point de vue exécutif, les activités du laboratoire sont supervisées par un conseil de laboratoire assisté d'un comité scientifique interne, tous deux placés sous l'autorité du directeur.
A 1.1.c. Stratégie d'insertion dans la communauté scientifique

Notre politique volontariste par rapport aux fédérations de recherche, aux projets fédératifs d'investissements d'avenir, et aux projets collaboratifs s'articule et se construit autour des objectifs suivants :

- Accompagner financièrement la volonté de prise de risque scientifique interdisciplinaire de nos chercheurs,
- Creuser le sillon de l'electrical engineering jusqu'aux interfaces,
- Pratiquer l'interdisciplinarité au sein de projets ambitieux,
- Décloisonner les activités de recherche.

a. SATIE laboratoire moteur dans les fédérations de recherche de l'ENS Cachan

Pour ancrer sa stratégie dans le projet de recherche de l'ENS Cachan, le laboratoire a œuvré pour la création de 2 instituts à Cachan : l'Institut d'Alembert (IDA- FR 3242) orienté majoritairement vers les sciences du vivant, et l'Institut Farman (FR 3311) dédié à la modélisation et la simulation. De la même manière, notre antenne de Ker Lann est fortement ancrée au sein du collège de recherche Hubert Curien, structure fédérative de toutes les activités de recherche de l'ENS Cachan menées sur le site de Bretagne. Nous sommes le seul laboratoire de l'ENS Cachan à participer à ces 3 structures, ce qui atteste de notre fort intérêt pour les projets pluridisciplinaires. Ces ancrages 'locaux' participent de notre positionnement scientifique et nous confèrent une identité très forte et une reconnaissance, sur lesquelles nous nous appuyons largement pour accroître le rayonnement du laboratoire SATIE.

Dans l'IDA créé en 2002, SATIE s'est clairement positionné par rapport aux trois autres UMR CNRS du campus de Cachan : le Laboratoire de Photonique Quantique et Moléculaire (LPQM), le Laboratoire de Biologie et Pharmacologie Appliquée (LBPA) et le Laboratoire de Photophysique et Photochimie Supramoléculaires et Macromoléculaires (PPSM). La création du pôle SIAME durant le quinquennat écoulé favorise la mise en place de notre politique scientifique au sein de l'IDA. C'est ainsi qu'avec l'arrivée des collègues de Cergy-Pontoise nous avons développé un fort savoir faire en systèmes d'imagerie multi-physique pour l'étude du vivant, complétant et faisant évoluer ainsi nos travaux en contrôleur non destructif.

Nous avons aussi mis en place l'Istitut Farman avec le Laboratoire de Mécanique et Technologie (LMT), le Laboratoire Universitaire de Recherche en Production Automatisée (LURPA), le Laboratoire de Spécification et Vérification (LSV) et le Centre de Mathématique et Leurs Applications (CMLA).

Le savoir-faire de SATIE sur la modélisation et l'analyse de systèmes complexes combinant information et énergie y constituent indiscutablement un atout majeur.

Les recherches menées dans le cadre de l'Institut Farman, souvent en coopération avec des partenaires institutionnels et industriels communs, abordent, avec des outils d'analyse complémentaires, le traitement de systèmes complexes physiques, logiciels, ou hybrides, leur modélisation mathématique, leur validation, leur contrôle et leur optimisation. L'Institut initie et soutient de nombreux projets de recherche interdisciplinaires, d'une durée déterminée, s'attaquant à des problèmes situés aux interfaces scientifiques et technologiques des systèmes complexes. Cette collaboration interdisciplinaire vise en particulier à traiter le problème des verrous technologiques identifiés par nos partenaires du monde industriel et institutionnel, sous l’angle d’approches globales et unifiées. Au cours du dernier quinquennat, les quatre thèmes suivants ont été abordés :

- analyse et simulation de phénomènes multi-échelles
- acquisition et analyse de données expérimentales
- modélisation des matériaux et des structures dans leur environnement
- contrôle-commande de systèmes complexes

Beaucoup d'études menées au laboratoire SATIE ont trait à des thématiques pluridisciplinaires aux interfaces de la biologie et de la chimie au sein de l'Institut d'Alembert, de la mécanique et de la thermique au sein de l-lnstitut Farman, ou des mathématiques, de l'informatique et de la biomécanique / biochimie au sein du collège Hubert-Curien. Ces collaborations au sein des Instituts favorisent l'émergence de nouveaux projets de recherche bénéficiant fortement des interactions avec les laboratoires partenaires. Elles constituent une réelle ouverture qui participe à l'équilibre, à la diversité et au dynamisme scientifique de notre laboratoire.

Cette approche pluridisciplinaire, chère à tous les membres de SATIE, justifie un travail de groupe mettant en synergie les savoir-faire individuels enrichissant notre cœur de compétences aux interfaces des domaines scientifiques. Pour exemple, le houlogénératuer SEAREV, projet impliquant le groupe SETE, dans lequel une forte interaction avec
des hydrodynamiciens a permis un enrichissement mutuel important et des avancées significatives à la fois du projet et des compétences disciplinaires.

De telles structures interdisciplinaires sont volontairement ouvertes et légères afin d'éviter une uniformisation de la pensée scientifique qui, au-delà d'une dilution des savoirs, les isoleraient des communautés scientifiques impliquées. Pour cela, il faut des canaux de régénération scientifique puisant dans les écosystèmes des laboratoires fondateurs et garantissant, sur le long terme, la porosité scientifique nécessaire à une réelle innovation interdisciplinaire.

b. Le positionnement régional sur l'Electrical Engineering

Au niveau régional, SATIE s'est investi dans les pôles de compétitivité SYSTEM@TIC, ASTECH, MOVEO, COSMETIC VALLEY. Nous sommes aussi acteurs dans des projets interdisciplinaires soutenus par les PRES UniverSud et UPGO, ainsi que dans les structures collaboratives telles que les RTRA (DIGITEO) ou initiées dans le cadre des investissements d'avenir (LabEx LaSIPS, PATRIMA, EquipEx PATRIMEX, IEED VEDECOM, et SATT IdF Innov). Le Laboratoire SATIE est l'un des acteurs majeurs à l'initiative ces projets. C'est donc naturellement que ceux-ci s'intègrent dans la politique scientifique de SATIE comme l'illustre par exemple l'articulation du LabEx LaSIPS sur le plateau de Saclay. Ce dernier nous permet d'étendre, avec les acteurs du plateau de Saclay, les objectifs scientifiques que nous poursuivons avec les instituts d'Alembert et Farman.

Précédemment nous avions œuvré à la création d'un pôle francilien SPEELabs constitué avec les 3 autres laboratoires de recherche en génie électrique de l'île de France (le Laboratoire des Technologies Nouvelles LTN (IFSTTAR ex-INRETS), le Laboratoire Génie Electrique de Paris LGEP (Supélec/Universités Paris 6 et Paris 11/CNRS) et le Département Energie de Supélec). Ce groupement a favorisé l'émergence de grands projets de recherche collaboratifs, tant aux niveaux régional que national et européen, dans le domaine des systèmes de conversion d'énergie électrique. Par exemple, le projet FUI 3MT associe les quatre laboratoires de SPEELabs.

Le quinquennat écoulé a permis des collaborations encore plus fortes initées principalement par SATIE : le LTN l'a d'ailleurs rejoint depuis le 1er janvier 2013;

SPEELabs prend aujourd'hui un nouvel essor : 10 directeurs de laboratoire ont signé une lettre d'intention pour créer une fédération de recherche en electrical engineering et se sont maintenant engagés dans la création d'un département Electrical and Optical Engineering (EOE) sur le plateau de Saclay qui a pour vocation de structurer la recherche en electrical engineering de la future université de Paris Saclay.
c. Quelques indicateurs de notre stratégie partenariale sur projets

Au niveau national, le laboratoire SATIE, a été un acteur de tout premier plan dans la mise en place du GDR SEEDS (Systèmes d'énergie électrique dans leur dimension sociétale). Plusieurs pôles de ce GDR sont animés par des chercheurs de SATIE notamment le pôle « transport ».

Concernant les projets collaboratifs, nos réponses aux appels d'offre ont été couronnées de succès comme le montre le tableau suivant relatant les principaux projets obtenus sur les 5 années écoulées :

<table>
<thead>
<tr>
<th>Projets européens</th>
<th>CSEE</th>
<th>SIAME</th>
<th>TOTAL SATIE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projets nationaux</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Projets émergents</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Projets CNRS</td>
<td>3</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>Projets Labex</td>
<td>5</td>
<td>8</td>
<td>13</td>
</tr>
<tr>
<td>Projets Farman</td>
<td>10</td>
<td>3</td>
<td>13</td>
</tr>
<tr>
<td>Projets IDA</td>
<td>2</td>
<td>8</td>
<td>10</td>
</tr>
</tbody>
</table>

Notre participation aux programmes nationaux et européens ne cesse de croître. Nous faisons partie de réseaux d'excellence européens (ex. NEWCOM#). La création d'un Laboratoire International Associé (LIA) avec Taïwan, ainsi que la mise en place du collège franco-brésilien Santos Dumont ont pour objectif d'institutionnaliser les collaborations récurrentes importantes que nous avons avec National Taïwan University et plusieurs universités brésiliennes. Notons que les sujets abordés au sein du LIA étant hautement sensibles, le dossier est actuellement examiné par le haut fonctionnaire sécurité défense. Notre collaboration avec le Vietnam ne cesse également de s'intensifier au travers de nombreux échanges d’étudiants et de thèses en codirection.

Il est intéressant de noter que 15% de nos articles sont cosignés par des chercheurs étrangers. Un effort doit néanmoins être fait afin d'augmenter le nombre de thèses en cotutelle avec les universités étrangères.

Nous observons bien dans ce tableau que nos chercheurs savent correctement exploiter les différentes modalités de financement proposées par l'organisation de la recherche. Nous souhaiterions ici attirer l'attention sur les dernières lignes du tableau qui montrent que nous finançons et accompagnons des prises de risques scientifiques grâce au CNRS, et aux instituts Farman et IDA.

Les différentes demandes de financements d'un projet scientifique exploratoire sont étudiées par le comité scientifique de SATIE qui aiguille le chercheur vers les différentes sources de financement semblant les plus appropriées dans la mise en œuvre de la politique scientifique du laboratoire : le laboratoire lui-même, l'Institut Farman, ou l'Institut D'Alembert. De projets émergents plus conséquents sont par ailleurs financés aux travers des projets LabEX dans lesquels le laboratoire est impliqué.

La plupart des financements « sur fonds propres » de projets scientifiques émergents se sont révélés très bénéfiques tant pour l'épanouissement des chercheurs que pour les avancées scientifiques. Ils ont souvent conduit à des projets de plus grande envergure telles les ANR ou FUI.

d. La stratégie de transfert et de valorisation

Le laboratoire SATIE a entamé depuis plusieurs années une démarche pragmatique et évolutive pour favoriser l'émergence d'un pôle d'expertise à visibilité régionale, nationale et internationale en Electrical Engineering et le transfert de technologie dans une politique de valorisation globale. Dans ce cadre, une politique raisonnée de dépôts de brevets, de licences de logiciels, de création de start-up, et de participation à la création de plateformes fédératives en vue d'accroître le transfert vers les entreprises a été favorisée.
Le laboratoire SATIE est devenu expert sur plusieurs problématiques sociétales et thématiques scientifiques relevant du traitement de l'énergie, des transports propres, des systèmes de contrôle non destructif et d'imagerie, et des systèmes relevant de la bio-ingénierie. Nous procédons à une recherche technologique au sens où elle répond à une demande des milieux socioéconomiques souvent en collaboration avec les centres de recherche industrielle (THALES, DASSAULT, AIRBUS, PSA, RENAULT, VALEO, EDF, ALSTOM, SAFRAN, SCHNEIDER ELECTRIC, GIVAUDAN, LVMH, BIO-EC…). La levée des verrous technologiques se décline en de réelles innovations scientifiques. Tout ceci procède d'une fertilisation croisée entre les milieux industriels et la communauté académique du laboratoire.

Compte tenu du cœur de métier de SATIE orienté vers une approche multidisciplinaire des systèmes complexes, que les équipes industrielles ne peuvent pas traiter ou du moins pour lesquelles elles sont mal armées, les solutions proposées combinent nécessairement information et énergie. Ceci explique la structure que SATIE s’est donné pour assurer l’unité et la synergie de nos travaux qui sont tous interdépendants dans cette optique ‘système’. Cette structuration non conforme aux traditionnels cloisonnements disciplinaires rencontrés dans les milieux académiques est l’expression même de notre volonté de valoriser nos travaux vers le monde socioéconomique. Le savoir faire expérimental de SATIE est de ce fait regroupé autour de plusieurs plateformes expérimentales (imagerie, intégration de puissance, conception de machines avancées, traitement de l’énergie). Nous avons plusieurs fois recruté des ingénieurs de valorisation pour nous épauler dans ces différents transferts industriels. Citons 4 exemples de travaux développés :

- l’imageur magnéto optique que nous avons développé au sein de la plateforme imagerie et qui a été transféré vers EADS avec le soutien du CRITT Ile de France et le CNRS,
- un procédé de détection précoce de cellules circulantes développé sur la plateforme microfluidique, soutenu par FIST,
- une méthode semi analytique de modélisation de champs électromagnétiques (DPSM) développée au sein de la plateforme imagerie,
- un convertisseur DC-DC piézoélectrique conçu et développé pour le CNES ayant fait l'objet d'un transfert technologique aux normes spatiales.

Conformément à sa tradition, le laboratoire SATIE continue d'encourager la création de startups :

* L’un des indicateurs de notre dynamisme en ce domaine sur ce quinquennat écoulé est le lancement en 2008 d'une nouvelle start-up CAPCELL dédiée à la valorisation de nos résultats dans le domaine de la détection de cellules tumorales circulantes par un microsystème dédié.

Une autre initiative est la création d'une structure de recherche et de valorisation commune associant SATIE, le Synchrotron Soleil et l’entreprise Bio-EC (PME spécialisée dans le test et l'objectivation) dont les verrous technologiques en santé et bien être, concernent la mesure d’efficacité et d’innocuité des produits cutanés. Ce partenariat permettra l’accélération du transfert de très haute technologie par la mise à disposition d'outils de tests innovants dédiés à l'industrie cosmétique et pharmaceutique au travers d'un véritable Living-Lab ouvert aux entreprises.

En termes d'expertises et de conseils, auprès du monde socio-économique, nous pouvons citer par exemple :

- François COSTA est conseiller auprès de la société Safran (programme POCA), auteur d’un séminaire à Sagem – Défense sur la CEM en électronique de puissance ainsi que d'autres expertises dans le domaine de l'électrification des voitures menées pour le compte de grands constructeurs Français.
- Dominique PLACKO est expert nommé auprès du Comité d'Orientiation de l'ONERA, membre du conseil scientifique du LNE (depuis 2005).
- Pierre-Yves JOUBERT a été conseiller auprès de la société EddySens pour la création et l'émergence de cette société.
• Bernard MULTON régulièrement sollicité dans les médias :
 o Interview pour Science et Vie (centenaire) avril 2013 : limites et perspectives de la récupération d'énergie humaine,
 o Hors série La Recherche/Le Monde nov.-décembre 2009, interview sur les Energies Renouvelables (article de F. Lemarchand, pp.32-35).

• Mohamed GABSI a été invité à débattre (OPECST : les nouvelles mobilités sereines et durables) à l'Assemblée Nationale en 2013, http://www.assemblee-nationale.tv/media.12.4074.0

A 2. Profil d'activités et bilans

Les missions de nos enseignants-chercheurs et chercheurs les amènent nécessairement à se consacrer à des activités ayant trait à la recherche, à la formation, à des tâches administratives et au développement de relations avec l'environnement socio-économique. Le tableau ci-dessous présente une synthèse de l'investissement du personnel permanent de SATIE dans ces différentes tâches.

<table>
<thead>
<tr>
<th>Unité/Équipe</th>
<th>Recherche académique</th>
<th>Interactions avec l'environnement</th>
<th>Appui à la recherche</th>
<th>Formation par la recherche</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ensemble</td>
<td>40</td>
<td>25</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>Pôle CSEE</td>
<td>40</td>
<td>30</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Pôle SIAME</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

Tableau 1 : Profil d'activités exprimé en pourcentage de l'activité globale.

Outre leurs activités de recherche académique, de nombreux enseignants-chercheurs du laboratoire ont de lourdes responsabilités administratives (1 Vice-Président du Conseil Scientifique de l'UCP chargé de la recherche et la valorisation, 1 Vice-Présidente de l'ENS Cachan chargée des moyens, 1 conseiller scientifique à la DGA, 2 directeurs de composantes (IUT et UFR), 3 directeurs de département (IUT, départements EEA), 4 responsables de Master et/ou Licences Professionnelles, diplômes d'ingénieurs et le directeur du laboratoire).

Le pourcentage important de nos interactions avec l'environnement reflète bien la politique scientifique d'un laboratoire d'ingénierie proche des enjeux socio-économiques (contrats et collaborations industriels, expertises, implications dans les pôles de compétitivité…). On notera enfin, le fort investissement de nos chercheurs dans la formation par la recherche (encadrement de près de 3 doctorants par chercheur habilité, un investissement fort dans les projets et les stages de plusieurs masters).

A 2.1. Bilan de la production du laboratoire

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chercheurs et EC</td>
<td>31</td>
<td>39</td>
<td>41</td>
<td>48</td>
</tr>
<tr>
<td>Chercheurs et EC (en ETPT)</td>
<td>16</td>
<td>20</td>
<td>21</td>
<td>25</td>
</tr>
<tr>
<td>Chercheurs habilités</td>
<td>12</td>
<td>19</td>
<td>19</td>
<td>24</td>
</tr>
<tr>
<td>Chercheurs habilités/chercheurs</td>
<td>0,38</td>
<td>0,48</td>
<td>0,46</td>
<td>0,5</td>
</tr>
<tr>
<td>Publications dans des revues internationales</td>
<td>65</td>
<td>153</td>
<td>184</td>
<td>310</td>
</tr>
<tr>
<td>Communications dans des conférences internationales</td>
<td>165</td>
<td>248</td>
<td>331</td>
<td>393</td>
</tr>
<tr>
<td>Revues/communications</td>
<td>40%</td>
<td>60%</td>
<td>60%</td>
<td>80%</td>
</tr>
<tr>
<td>Communications internationales / chercheurs (en ETPT)/an</td>
<td>2,6</td>
<td>3,1</td>
<td>4,1</td>
<td>2,9</td>
</tr>
<tr>
<td>Revues internationales/chercheurs (en ETPT)/an</td>
<td>1</td>
<td>1,9</td>
<td>2,2</td>
<td>2,3</td>
</tr>
<tr>
<td>Doctorants</td>
<td>33</td>
<td>33</td>
<td>50</td>
<td>67</td>
</tr>
<tr>
<td>Doctorant / chercheurs habilités</td>
<td>2,7</td>
<td>1,7</td>
<td>2,2</td>
<td>2,9</td>
</tr>
<tr>
<td>Doctorats soutenus (moyenne par an)</td>
<td>29 (7)</td>
<td>32 (8)</td>
<td>35 (9)</td>
<td>74 (14)</td>
</tr>
<tr>
<td>HDR</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>Doctorats soutenus / chercheurs habilités</td>
<td>2,4</td>
<td>1,7</td>
<td>1,7</td>
<td>3,25</td>
</tr>
<tr>
<td>Brevets (+extensions)</td>
<td>12</td>
<td>25</td>
<td>18</td>
<td>15 (+16ext)</td>
</tr>
<tr>
<td>Brevets/chercheurs (en ETPT)</td>
<td>0,7</td>
<td>1,2</td>
<td>0,8</td>
<td>0,6</td>
</tr>
</tbody>
</table>
On observe que sur ce dernier quinquennat le nombre de doctorants et de doctorats soutenus a considérablement augmenté. Le ratio Revues/Communications congrès (0,8) est le juste reflet d'une politique de publication incitant les chercheurs à soumettre leurs travaux à des revues. On peut ainsi se féliciter du ratio du nombre de revues internationales par an et par chercheur (ETPT) sur le quadriennal qui est de 2,3, ratio au dessus des standards attendus.

A 2.2. Rayonnement et attractivité académiques

Le rayonnement et l'attractivité de SATIE sont importants et diversifiés, tant dans des structures d'animation de la recherche, que dans celles de diffusion des connaissances. Il est observable au travers de la présence importante de ses membres, dans les différentes instances, à toutes échelles (locale, nationale, internationale), listées dans le tableau ci-dessous :

<table>
<thead>
<tr>
<th></th>
<th>CSEE</th>
<th>SIAME</th>
<th>Total SATIE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Membres de structures d'évaluations</td>
<td>4 CNU et 1 CoNRS</td>
<td>3 CNU et 1 CoNRS</td>
<td>9</td>
</tr>
<tr>
<td>Membres de structures d'animation de la recherche</td>
<td>7</td>
<td>17</td>
<td>24</td>
</tr>
<tr>
<td>Membres de comités scientifiques de conférences internationales</td>
<td>5</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>Editeurs associés dans des revues ou membre de comités éditoriaux</td>
<td>12</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>Expertises programmes européens et internationaux</td>
<td>5</td>
<td>8</td>
<td>13</td>
</tr>
<tr>
<td>Expertise grands programmes nationaux</td>
<td>22</td>
<td>31</td>
<td>53</td>
</tr>
<tr>
<td>Autres expertises</td>
<td>44</td>
<td>28</td>
<td>72</td>
</tr>
<tr>
<td>Participation jury de thèse et HDR</td>
<td>227 (dont 16 à l'étranger)</td>
<td>153 (dont 8 à l'étranger)</td>
<td>380</td>
</tr>
<tr>
<td>Invitation étranger</td>
<td>23</td>
<td>7</td>
<td>30</td>
</tr>
<tr>
<td>Organisation de conférences nationales et journées thématiques</td>
<td>12</td>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td>Organisation de sessions et de conférences internationales</td>
<td>5</td>
<td>9</td>
<td>14</td>
</tr>
<tr>
<td>Chercheurs étrangers invités</td>
<td>11</td>
<td>7</td>
<td>18</td>
</tr>
<tr>
<td>Collaborations nationales</td>
<td>24</td>
<td>18</td>
<td>42</td>
</tr>
<tr>
<td>Collaborations internationales</td>
<td>23</td>
<td>18</td>
<td>41</td>
</tr>
<tr>
<td>Directeur de collections</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Le détail par pôle est donné en annexe 6.

A 3. Organisation et vie de l'unité

Coordonner les activités de recherche sur 5 sites simultanément nécessite une organisation particulière tant scientifique que logistique. L'organisation de *séminaires dans les différents sites* et l'utilisation intensive de liaisons informatiques sécurisées incluant des systèmes de visio-conférences permettent un niveau d'interaction optimisé. Ces visioconférences permettent d'assurer des contacts réguliers tout en minimisant les déplacements. Cette organisation nous permet d'entretenir une organisation thématique indépendamment d'une logique de site. L'organisation scientifique du laboratoire est schématisée ci-après, l'organigramme du laboratoire est fourni en annexe 4.
La direction est un comité de direction composé du directeur et des deux responsables de pôles. Le conseil de laboratoire joue le rôle qui lui est conventionnellement dévolu (voir le règlement intérieur en annexe).

Au delà d'un rôle de conseil et de classement sur les demandes de postes et de financement, le comité scientifique interne assure une synergie interdisciplinaire entre les travaux des différents groupes, ainsi que l'adéquation aux objectifs du laboratoire. Il aide les chercheurs à organiser collectivement leurs réponses aux AAP, notamment sur les aspects « prise de risque scientifique ».

Complété par des personnalités extérieures ce comité se transforme ponctuellement en conseil scientifique effectuant annuellement le bilan et donnant une prospective scientifique.

Nous organisons systématiquement un Conseil de Laboratoire par mois. En revanche, à la demande des personnels, les commissions ITA, informatiques, et Hygiène et Sécurité sont sollicitées ponctuellement sur demande du Conseil de Laboratoire.

Pour favoriser la vie scientifique du laboratoire, des séminaires sont organisés régulièrement. On peut y distinguer les séminaires internes dans lesquels interviennent principalement les doctorants, et les séminaires avec intervenants extérieurs. Le 'pot commun' prend en charge les déplacements nécessaires. De nombreuses réunions sont organisées en visioconférences entre les sites les plus distants (Cachan et Rennes).

Très régulièrement nous informons et préparons nos doctorants sur leur devenir (rédaction d'un CV, CoNRS, CNU,…), notamment grâce à la présence, parmi les personnels du laboratoire, de membres de ces différents comités. Une journée des doctorants est aussi organisée tous les ans, et les doctorants l'organisant se voient ainsi attribuer un module de l'école doctorale EDSP. Une réunion de rentrée générale est organisée pour tous les nouveaux doctorants afin de les accueillir convenablement et de leur transmettre plus solennellement les différents messages concernant par exemple l'organisation et la politique scientifique du laboratoire, le règlement intérieur, les règles à appliquer en matière d'hygiène et de sécurité.

La vie scientifique des pôles se déroule à plusieurs niveaux, et s'articule avec celle du laboratoire. Elle commence par l'animation scientifique de chaque groupe. Chaque responsable de groupe organise régulièrement des réunions et séminaires multi-sites ouverts à tous, dont la fréquence est variable. Les séminaires ont fonction d'animation interne par pôle et inter-pôles et doivent contribuer à favoriser les rencontres scientifiques entre groupes. Les chercheurs invités étrangers sont également conviés à intervenir dans le cadre de ces séminaires lors de leur séjour.

Les responsables des pôles ont pour rôle d'impulser la dynamique transversale intergroupes et inter-pôles. Les responsables de pôles et de groupes se retrouvent régulièrement dans le cadre du conseil de laboratoire et du comité scientifique interne pour définir les grandes orientations.

L'organisation de congrès constitue également un élément d'animation scientifique très important qui permet d'élargir les réflexions scientifiques au delà des pôles et du laboratoire.
A l'initiative de jeunes chercheurs un groupe d'animation scientifique a été créé. Ce groupe a instauré, par exemple, la journée des doctorants au cours de laquelle les doctorants du laboratoire interagissent de manière conviviale afin de créer également un esprit de promotion. Nous avons délibérément confié la responsabilité de ce groupe d'animation scientifique à de jeunes chercheurs des différents groupes n'ayant pas de responsabilité structurelle au sein du laboratoire afin de tenir compte de l'ensemble des sensibilités. Ce processus contribue à une démarche qualité et participative nécessaire à une ambiance de travail favorisant l'efficacité, partagée par tous, et ce dans un contexte de laboratoire multi-sites ayant un effectif en forte croissance.

Par ailleurs, la rédaction et la diffusion d'une gazette scientifique interne « Avant-dernières pensées » permet de mettre en lumière les travaux en cours des membres du laboratoire. Notons enfin le grand succès que nous avons obtenu en organisant les 35 ans de recherche à SATIE le 2 juillet 2013 rassemblant toutes les générations depuis la création du laboratoire et confirmant une solide identité.

A 3.1. La gestion administrative

En septembre 2008, nous avons recruté Sophie ABRIET qui est notre responsable administrative. Grace à son expertise et aux soutiens logistiques mis en place tant à la délégation CNRS qu'à l'ENS, au CNAM et à l'Université de Cergy-Pontoise, elle gère parfaitement bien l'ensemble de nos contrats. En ce sens notre cellule administrative est bien organisée pour répondre à nos demandes.

A 3.2. Gestion des ressources humaines

Le directeur rencontre régulièrement les agents ITA ce qui lui permet de bien connaître les souhaits et les aspirations professionnelles. De la même manière les chercheurs et enseignants-chercheurs, de part leur participation à la vie collective sont préparés à prendre des responsabilités croissantes. Les enseignants-chercheurs recrutés se voient octroyée une décharge d’enseignant favorisant ainsi leur intégration dans le milieu de la recherche. Une gestion prévisionnelle des emplois et des carrières permet d’anticiper les départs afin de contribuer à la capitalisation des savoir-faire. Le directeur s’appuie sur le conseil de laboratoire pour les décisions relatives à la GRH.

A 3.3. Arrivées et Départs

Durant ce quinquennat, le personnel de SATIE a crû de manière considérable. La structure actuelle au regard des nouveaux entrants a permis d'accroître notre visibilité dans différents domaines :

- En juin 2008, nous avons tout d'abord accueilli 1 PU et 3 MCF (de Paris X) qui sont venus renforcer les activités de l'actuel pôle SIAME notamment en Traitement du Signal et en imagerie radar.

- En janvier 2010, nous avons intégré de 7 chercheurs (4PU et 3MCF) issus du Laboratoire ECIME (de l'Université Cergy Pontoise). L'ensemble de ces chercheurs a permis au pôle SIAME d'enrichir considérablement ses activités multi-capteurs pour la caractérisation de matériaux et le CND, par l’apport de nouvelles techniques instrumentales, d’analyse des signaux, et de nouveaux champs d’application tels que les biocapteurs et les matériaux hybrides biocompatibles.

- En janvier 2013, l’accueil d'une équipe de 14 permanents de l’IFSTTAR (3 IE/IR, 1 MCF, 2DR et 5 CR) est venu renforcer les compétences et moyens du pôle CS2E grâce à l’ouverture scientifique qu’elle apporte via ses thèmes de recherche notamment en lien avec l'électro-mobilité.

- Enfin en janvier 2015, un renforcement des activités, notamment en électro-mobilité, est prévu grâce à l'arrivée de 15 permanents de l'équipe Architecture, Contrôle, Communication, Images, Systèmes (ACCIS-IEF Paris Sud) (5 PU, 8 MCF, 2 IT).

En outre, plusieurs recrutements ont eu lieu durant ce quinquennat et sont reportés dans le tableau ci-dessous.

<table>
<thead>
<tr>
<th>Prénom, Nom</th>
<th>Grade</th>
<th>Pôle</th>
<th>Année d’affectation</th>
<th>Etablissement d’affectation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sophie Abriet</td>
<td>AI</td>
<td>SC</td>
<td>2008</td>
<td>CNRS</td>
</tr>
<tr>
<td>Marie Ruellan</td>
<td>MCF</td>
<td>CSEE</td>
<td>2008</td>
<td>UCP</td>
</tr>
</tbody>
</table>
Tableau 3 : Liste des arrivants

<table>
<thead>
<tr>
<th>Prénom Nom</th>
<th>Grade</th>
<th>Pôle</th>
<th>Année de départ</th>
<th>Devenir</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eric Labouré</td>
<td>MCF</td>
<td>CSEE</td>
<td>2008</td>
<td>Promotion PU LGEP</td>
</tr>
<tr>
<td>Jean-Pierre Madrange</td>
<td>Tech</td>
<td>SC</td>
<td>2008</td>
<td>Retraite</td>
</tr>
<tr>
<td>Lan Tran</td>
<td>CR</td>
<td>SIAME</td>
<td>2009</td>
<td>CYTOCAP</td>
</tr>
<tr>
<td>Marie-Caroline Julien</td>
<td>CR</td>
<td>SIAME</td>
<td>2010</td>
<td>Mut. UMR 7083</td>
</tr>
<tr>
<td>Sandrine Bouissou</td>
<td>Tech</td>
<td>SC</td>
<td>2011</td>
<td>NOEMI</td>
</tr>
<tr>
<td>Rohlet Waberi</td>
<td>Tech</td>
<td>SC</td>
<td>2012</td>
<td>MàD du CNRS</td>
</tr>
<tr>
<td>Jean-Claude Faugièr</td>
<td>IE</td>
<td>CSEE</td>
<td>2012</td>
<td>Retraite</td>
</tr>
<tr>
<td>Bernard Journet</td>
<td>MCF</td>
<td>SIAME</td>
<td>2012</td>
<td>LPQM</td>
</tr>
<tr>
<td>Pierre-Yves Joubert</td>
<td>MCF</td>
<td>SIAME</td>
<td>2011</td>
<td>Promotion PU IEF</td>
</tr>
<tr>
<td>Guillaume Ginolhac</td>
<td>MCF</td>
<td>SIAME</td>
<td>2012</td>
<td>Promotion PU LISTIC Annecy</td>
</tr>
</tbody>
</table>

Tableau 4 : Liste des départs

<table>
<thead>
<tr>
<th>Prénom Nom</th>
<th>Grade</th>
<th>Pôle</th>
<th>Année de départ</th>
<th>Devenir</th>
</tr>
</thead>
<tbody>
<tr>
<td>Olivier De La Barrière</td>
<td>CR</td>
<td>CSEE</td>
<td>2012</td>
<td>CNRS</td>
</tr>
<tr>
<td>Guillaume Hérault</td>
<td>IE</td>
<td>CSEE</td>
<td>2012</td>
<td>Cnam</td>
</tr>
<tr>
<td>Denis Lahousse</td>
<td>MCF</td>
<td>CSEE</td>
<td>2012</td>
<td>Cnam</td>
</tr>
<tr>
<td>Oleksandr Pasko</td>
<td>Ch. CDI</td>
<td>CSEE</td>
<td>2012</td>
<td>CNRS</td>
</tr>
<tr>
<td>Regis Besse</td>
<td>IE</td>
<td>SIAME</td>
<td>2013</td>
<td>UCP</td>
</tr>
<tr>
<td>Mickael Petit</td>
<td>MCF</td>
<td>CSEE</td>
<td>Sept 2013</td>
<td>Cnam</td>
</tr>
<tr>
<td>Thomas Rodet</td>
<td>PU</td>
<td>SIAME</td>
<td>Sept 2013</td>
<td>ENS Cachan</td>
</tr>
</tbody>
</table>

Sur ce dernier quinquennat nous avons eu également les départs suivants.

A 4. Présentation du pôle Composants et Systèmes pour l’Energie Electrique (CSEE)

A 4.1. Politique scientifique et structuration du pôle

Les activités du pôle CSEE sont tournées vers les secteurs des transports et de la gestion de l'énergie électrique. Elles abordent plus particulièrement les chaines d'entraînement et de contrôle des véhicules de transports terrestres, les
auxiliaires de génération, d'actionnement et de conversion statique dans les aéronefs ainsi que les dispositifs de gestion et de production d'énergie électrique à partir de sources renouvelables. Les problématiques s'étendent du composant et des matériaux jusqu'au système dans des approches où l'expérimentation, la modélisation et l'optimisation se complètent et constituent une culture forte du pôle. Celui-ci est structuré en quatre groupes dont les activités concernent des champs scientifiques spécifiques et complémentaires en interaction :

- **Electronique de Puissance et Intégration (EPI)** : les activités de ce groupe concernent la conception et la modélisation de convertisseurs statiques à forte densité de puissance en prenant en considération leurs contraintes d'usage et d'insertion dans un environnement électrique donné, ce qui concerne et traite des problématiques scientifiques comme l'étude de nouvelles structures de convertisseurs bien adaptées à la montée en fréquence et à leur intégrabilité, l'étude de convertisseurs basés sur l'usage de matériaux piézoélectrique, l'étude de la fiabilité et de la robustesse des composants de puissance en particulier les nouveaux composants à grand gap, l'étude de la compatibilité électromagnétique dans le domaine de la conversion statique.

- **Matériaux Magnétiques pour l'Energie (MME)** : la vocation de ce groupe est l'élaboration et la caractérisation structurale des matériaux magnétiques du génie électrique utilisés entre autres par les autres groupes et pôles de SATIE. Son champ scientifique couvre la modélisation des matériaux et de leurs pertes ainsi que l'instrumentation associée. La diversité des matériaux étudiés s'étend des ferrites doux aux matériaux laminés, aux aimants sans terre rares, aux matériaux multiferrroïques et magnéto caloriques.

- **Systèmes d'énergie pour les transports et l'Environnement (SETE)** : les activités de ce groupe se développent dans les domaines des convertisseurs électromécaniques non-conventionnels, de la gestion et de l'optimisation des sources d'énergie renouvelable, ainsi que du contrôle/commande des systèmes électriques complexes. Les champs scientifiques associés intègrent les outils de modélisation pour la conception et l'optimisation.

- **Technologies Nouvelles (TN)** : le comité ad-hoc de l'INSIS (CNRS) a donné un avis favorable le 01/01/2013 à l'intégration dans SATIE du laboratoire des technologies nouvelles (LTN) de l'IFSTTAR. Les travaux de recherche sont coordonnés depuis cette date et son directeur actuel participe aux conseils de SATIE. Le groupe développe une activité étroitement liée aux composants et systèmes gérant l'énergie électrique dans les transports désignés sous le terme d'électro-mobilité. Son champ d'expertise concerne le vieillissement des composants de puissance tels les modules semi-conducteurs ou les super-condensateurs, la physique de défaillance des semi-conducteurs, la pile à combustible. Les indicateurs relatifs à ce groupe récemment rattaché au pôle CSEE sont présentés dans le dossier joint du LTN.

Groupe EPI « Electronique de puissance et intégration »

Mots clés : Piézoélectricité, récupération d'énergie, Intégration de puissance, structures de conversion, filtrage, CEM, modélisation électromagnétique, modélisation électrothermique, composants à semi-conducteur de puissance, robustesse, durée de vie.

Spécificité nationale : La spécificité du groupe à l'échelle nationale tient à la fois à l'originalité forte de certaines de ses thématiques (électronique de faible puissance pour la récupération d'énergie, intégration de filtres CEM, modèles CEM conduits et rayonnés de convertisseurs d'électronique de puissance, instrumentation spécifique en électronique de puissance) et à la prise en compte de contraintes CEM et de durée de vie dans le mise en œuvre de ses différentes activités de recherche.

Dans une démarche d'intégration des structures de conversion statique de l'énergie et d'amélioration des contraintes d'usage en électronique de puissance (efficacité énergétique, compatibilité électromagnétique, durée de vie/fiabilité), les activités du groupe EPI se sont déclinées lors du dernier quadriennal en 3 principales thématiques structurées comme suit dans le cadre de partenariats multiples (industriels, académiques et internationaux) et des projets participatifs (voir annexe) :

- Intégration en électronique de puissance
 - Structures, filtres et procédés d'intégration
Partie A : Bilan du laboratoire SATIE

- Convertisseurs et générateurs piézoélectriques
- Amélioration des performances d'usage en électronique de puissance :
 - Compatibilité électromagnétique
 - Robustesse et durée de vie des composants et modules de puissance à semi-conducteur

a. Intégration en électronique de puissance

Structures, filtres et procédés

Les activités du groupe sur cette thématique se sont poursuivies en collaboration étroite avec E. Labouré (LGEP) en lien avec le GIS 3DPHI et sur deux aspects distincts touchant aux structures de conversion et à l'intégration de passifs.

La thèse de F. Adam a porté sur le développement de structures de conversion originales permettant à la fois une très forte intégration et une faible pollution électromagnétique (convertisseur multicellulaire parallèle).

L'intégration de composants passifs s'est poursuivie pour la réalisation de filtres dédiés à la CEM en insérant au sein d'un même élément l'ensemble des fonctions initialement réalisées uniquement par des composants discrets. Nous développons ainsi des dispositifs innovants tant par leur architecture qu'au niveau des matériaux utilisés. Les activités se sont orientées, au travers de la thèse de M. Ali, vers l'intégration hybride dans une structure PCB de composants passifs pour le filtrage HF associé à des composants actifs pour le filtrage BF.

Convertisseurs et générateurs piézoélectriques

Les activités « convertisseurs et générateurs piézoélectriques » au sein du groupe EPI concernent l'utilisation des matériaux piézoélectriques en électronique de puissance. Depuis 2007, ces travaux sont menés dans un cadre international avec une forte collaboration avec l'université NTU (National Taiwan University) de Taipei et la codirection de 3 thèses.

Cette thématique est orientée d'une part, vers la réalisation et la modélisation de nouvelles structures de transformateurs piézoélectriques et d'autre part, vers l'étude des dispositifs piézoélectriques servant à la récupération d'énergie de vibration.

Pour les transformateurs, nous nous sommes attachés à optimiser leur fonctionnement autour de leur fréquence de résonance mécanique et à développer de nouvelles structures de micro-transformateurs à base de couches minces piézoélectriques déposées sur silicium.

Pour les activités liées à la récupération d'énergie dans les systèmes en vibration, les problématiques scientifiques concernent des champs conceptuels et technologiques variés (analyse et modélisation des gisements d'énergie, modes de transduction, optimisation de la conversion d'énergie, hybridation, autopilotage, filière technologique de micro-fabrication, optimisation des matériaux), et nos efforts ont porté sur la recherche de structures de conversion adaptées à la spécificité de la génération piézoélectrique ainsi que sur la réalisation de commande à très faible consommation (auto-alimentation).
b. Amélioration des performances d’usage en électronique de puissance

Compatibilité électromagnétique

La compatibilité électromagnétique des systèmes de conversion d’énergie et plus particulièrement des convertisseurs électroniques de puissance représente un thème fort des activités de recherche du pôle. L’apparition de composants à « grand gap » (GaN, SiC) extrêmement rapides préfigure une électronique à très haute densité de puissance et à fréquence de découpage élevée. Ils imposent ainsi de nouvelles contraintes de conception, mais aussi une rupture quant aux méthodes d’estimation des perturbations conduites et rayonnées. Toutes les études menées sur la CEM ont pour objectifs la compréhension, l’analyse et l’optimisation respectivement des phénomènes physiques complexes et des solutions à apporter pour l’ensemble du système dans son environnement.

Modélisation des perturbations conduites et rayonnées engendrées par des dispositifs électroniques de puissance complexes : les techniques mises en œuvre telles que les approches par « fonctions de couplage » ou « multipôles équivalents » permettent non seulement des résultats rapides et robustes mais également une uniformisation des techniques de simulation. Cette action englobe naturellement les recherches sur la connectique intra- et inter-systèmes mais aussi sur la conception d’actionneurs électromécaniques sous contraintes CEM initiées avec le groupe SETE.

Modélisation et caractérisation automatisée des sources de rayonnement en champ proche : Ces études ne peuvent se limiter aux phénomènes d’émission et la susceptibilité, trop longtemps laissée au second plan pour les structures de puissance fait l’objet d’une réelle attention. Pour cela, nous nous appuyons sur les études menées sur la modélisation et la caractérisation automatisée des sources de rayonnement en champ proche, pour lesquelles un banc spécifique et une métrorologie à résolution améliorée sont développés.

Optimisation des techniques de filtrage : Nous développons des dispositifs innovants de filtrage (architecture et matériaux). Un lien étroit est naturellement fait avec les actions d’intégration en cherchant à insérer au sein d’un même élément l’ensemble des fonctions ou un jeu de fonctions dans le cas de structures hybrides initialement réalisées uniquement par des composants discrets.

Robustesse et durée de vie des semi-conducteurs de puissance

Les activités liées au comportement des composants et modules de puissance à semi-conducteur concernent les applications de ces dispositifs sous des contraintes électriques et thermiques sévères. Nous avons notamment cherché à mettre en évidence quelques unes des potentialités et limitations des composants à semi-conducteur, et notamment grand gap dans des applications particulièrement contraignantes, qu’il s’agisse de la haute température de fonctionnement (aéronautique, forage, automobile) ou de contraintes électriques sévères (protections). Les puces de puissance ne pouvant être étudiées seules, des activités de recherche ont été poursuivies sur le comportement des assemblages de puissance dans des environnements thermiques là encore sévères.

Robustesse et durée de vie

Les activités touchant au comportement intime des puces ou à leur environnement proche (métafiltration par exemple) ont été menées en collaboration avec le LTN de l’IFSTTAR. Elles ont porté sur comportement de composants grand gap (JFET & MOSFET SiC) et silicium fortement intégrés (smart power) en régime de fonctionnement extrêmes : mise en évidence des modes de défaillance et recherche d’indicateurs pertinents de vieillissement. Les activités touchant au packaging se sont déroulées en collaboration avec le LMT de l’ENS Cachan dans le cadre de l’institut Farman. Nous nous sommes principalement focalisés sur le comportement des substrats céramiques lorsqu’ils sont soumis à des cycles de température de forte amplitude. Différents types de substrats mettant en œuvre à la fois
différentes natures de céramiques et différents matériaux conducteurs (DCB, AMB et HTCC) ont été analysés.

Instrumentation pour le suivi du vieillissement de composants de puissance

Cette activité initiée en collaboration avec le pôle SIAM a pour objectif de développer des capteurs et le traitement de signal associé dédiés au contrôle santé intégré des modules de puissance à semi-conducteur, mais aussi, à l'aide d'une instrumentation spécifique, de mieux comprendre certains modes de défaillance, ou l'effet de dégradations identifiées sur le comportement des puces et modules de puissance.

A 4.1.b. Groupe MME « Matériaux Magnétiques pour l'énergie »

Les travaux du groupe « matériaux magnétiques pour l'énergie » sont consacrés à l'étude des propriétés fondamentales et fonctionnelles des matériaux magnétiques en général.

Mots clés : Élaboration, caractérisation structurale et physique, modélisation des matériaux magnétiques et des pertes, instrumentation associée, matériaux magnétiques doux pour l'électronique de puissance et l'électrotechnique, aimants sans terres rares, matériaux magnétoalcaloriques, multiferroïques et effets couplés.

Spécificité nationale : L’originalité de ce groupe dans le paysage national du magnétisme tient principalement à deux aspects : notre travail est à la fois ancré dans le génie électrique (nous essayons de répondre à des demandes sociétales et industrielles à moyen et long terme) et ouvert sur toutes les disciplines scientifiques : physique du solide, chimie inorganique, métallurgie, mathématiques. Nos travaux se situent donc aux frontières de plusieurs disciplines et communautés où l'ingénieur ne se contente pas d'étudier les propriétés des matériaux fabriqués par les chimistes, mais devient véritablement acteur de l'élaboration du matériau. Cette philosophie a fait de notre groupe un acteur clé à la frontière de ces disciplines, comme le montrent les très nombreuses collaborations nationales et internationales que nous entretenons.

Les objectifs poursuivis sont deux de deux ordres :

- améliorer les propriétés d'usage des matériaux, leur intégrabilité et les procédés permettant de les intégrer dans des dispositifs et les modéliser;
- inventer des matériaux avec de nouvelles propriétés, éventuellement multi-physiques, pour de nouvelles fonctionnalités en combinant des approches expérimentales et théoriques.

Le groupe MME est naturellement transversal dans le pôle CSEE (les matériaux, procédés et modèles que nous développons sont destinés à être utilisés par les groupes EPI et CETE), ainsi que dans le laboratoire, puisque notre expertise peut intervenir dans tous travaux liés aux matériaux magnétiques, comme les capteurs ou des applications en biotechnologie à base de nanoparticules magnétiques (groupes II et BIOMIS de SIAME.) Cette transversalité présente la potentialité de faire converger les intérêts scientifiques de plusieurs groupes, tout en préservant des thématiques propres loin en amont des applications, condition indispensable pour rester performant et innovant.

L'activité se déroule autour de 4 axes et 1 thème transversal.

a. Les aimants sans terres-rares

Notre groupe, s'inscrivant dans la crise des terres-rares qui est au centre de l'attention de la communauté scientifique, a réalisé l'aimant ferrite isotrope le plus dur du monde (0,5 T de champ coercitif) en 2010. Nous sommes également un des tous premiers groupes au monde à avoir lancé les recherches sur les aimants Mn-Al en 2012 et le premier à avoir fabriqué un aimant MnAl nanostructuré par la voie trempe-rapide+SPS (procédé de frittage par impulsions électrique). Ce projet est soutenu par la chaire Valéo de l'Université Versailles Saint-Quentin.
b. **Les matériaux composites doux**

Dans un but applicatif lié aux activités du groupe SETE, nous avons contribué de manière très sensible à l'amélioration des modèles de pertes pour les poudres de fer ; la collaboration très active avec l'INRIM de Turin a permis notamment de monter un des premiers dispositifs au monde adapté à la mesure des pertes en champ tournant sur ces matériaux (l'aimant a été conçu et réalisé à SATIE avec l'équipe SETE et installé à Turin).

c. **Ferrites pour l'électronique de puissance et composants intégrés :**

Nous avons, avec Thales R&T, mis au point des ferrites de puissance à base Ni-Zn pour fonctionner au-dessus du MHz qui présentent tous les avantages attendus pour l'intégration, à savoir, une faible température de frittage (qui permet le co-frittage avec des métaux) et une parfaite compatibilité avec le procédé SPS. Sur la base de ce ferrite, nous avons réalisé, en collaboration avec le groupe EPI, des composants passifs monolithiques dans lesquels le(s) bobinage(s) sont noyés (brevet en cours).

d. **Matériaux multi-physiques :**

Ce thème regroupe tous les matériaux qui présentent un couplage entre leurs propriétés magnétiques et une autre propriété physique d'une même phase ou des deux phases d'un (nano)composite ; il concerne les matériaux magnéto-caloriques (hexaferrites à transition de réorientation de spin et Fe-P, étudiés dans le cadre de deux projets européens), multiferroïques (composites piézoélectrique/magnétique à effet magnéto-électrique extrinsèque), ou ferri/antiferromagnétiques (effet de polarisation d'échange ou exchange bias) ou dur/doux (couplage d'échange ou spring magnets.)

e. **Instrumentation :**

Nous avons développé un hystérésigraphe digital large bande (5 MHz de bande passante), un hystérésigraphe haute résolution à contrôle numérique de forme d'onde, un instrument de mesure du coefficient magnéto-électrique et nous développons actuellement un instrument de mesure de l'anisotropie magnéto-cristalline. Nous possédons par ailleurs un magnétomètre à échantillon vibrant commercial (2 T, 77-950 K.)

A 4.1.c. Groupe SETE : « Systèmes d'Energie pour les Transports et l'Environnement »

Les trois principales thématiques développées dans le groupe concernent les chaînes de conversion, la gestion optimale et le contrôle des systèmes d'énergie électrique.

Mois clés : Machines électriques, modélisation, dimensionnement et optimisation de systèmes électriques, méthodologies de conception et d'eco-conception, gestion d'énergie, intégration de lois de vieillissements, stockage d'énergie électrique, systèmes de récupération d'énergies renouvelables, contrôle/commande et architectures matérielles dédiées.

Spécificité nationale : L'originalité de ce groupe réside dans ses activités de conception de nouveaux transducteurs électromagnétiques, dans l’élaboration de méthodologies de gestion et de dimensionnement des systèmes électriques tenant compte du cycle de vie des sous-systèmes, notamment de leur vieillissement et de leur impacts environnementaux et enfin, concernant la maîtrise des systèmes électrique, nous abordons cette question au travers du couplage entre l’élaboration des lois de contrôles optimales et la conception d’architectures matérielles (FPGA) optimisées.

Les objectifs scientifiques du groupe SETE sont orientés vers la recherche de solutions électriques innovantes répondant aux exigences du développement durable. Ses activités sont focalisées sur l'imagination et l'évaluation théorique (modélisation et optimisation) et expérimentale de nouveaux concepts afin d'augmenter l'efficacité énergétique des modes de traitement de l'énergie électrique déjà existants, d'améliorer leur qualité de conversion, de minimiser leurs impacts environnementaux et enfin de proposer de nouvelles pistes en termes d'architectures de conversion, de gestion et de contrôle et de nouvelles méthodologies de modélisation et de conception. Par ailleurs, là où
cela est nécessaire, nous adoptons une approche « système » couplée à une démarche de conception sur cycle de vie intégrant la fiabilité et le vieillissement.

Nos travaux de recherche sont adossés aux trois supports applicatifs suivants : les transports (terrestre et aérien), la récupération des ressources renouvelables, et le bâtiment intelligent car soumis à de contraintes fortes (efficacité, fiabilité, impact environnemental,…) et sources de problématiques scientifiques très riches et stimulantes.

Nos contributions dans ces problématiques sociétales concernent l'étude de nouveaux concepts et architectures, l'élaboration de modèles (à l'échelle du composant mais aussi du système), de méthodologies d'optimisation et de conception, de stratégies de gestion d'énergie et de commande.

Les activités du groupe SETE étaient déclinées lors du dernier quadriennal en 4 principales thématiques :

- Conception des convertisseurs électromécaniques non-conventionnels pour applications exigeantes,
- Etude et conception sur cycle de vie de systèmes de récupération des ressources renouvelables sur cycle de vie,
- Elaboration de méthodologies génériques de modélisation formelle ou semi-analytique et de conception,
- Maîtrise des systèmes électriques.

a. **Conception des convertisseurs électromécaniques non-conventionnels pour des applications exigeantes.**

Notre contribution dans ce domaine réside dans la recherche, la modélisation et la validation expérimentale (prototypage) de nouveaux transducteurs électromagnétiques (actionneurs/générateurs/capteurs). Différents nouveaux concepts d'actionneurs ont été élaborés, notamment les actionneurs à double excitation ou encore les actionneurs à commutation de flux. Ces travaux ont donné lieu à de nombreux dépôts de brevets CNRS. Par ailleurs, ces activités de conception sont couplées aux études liées à l'emploi de nouveaux matériaux magnétiques (granulaire), à l'analyse et à la compensation active de vibrations d'origine magnétique ainsi qu'aux études de robustesse et de fonctionnement en modes dégradés des chaînes électromécaniques. Ces travaux sont notamment effectués dans le cadre de projets ANR/FUI (SEPHORA, M2EI, CETI, e-MECA, Elift3) mais aussi de projets industriels (Valeo, LeroySomer, S2M,…). Ils sont également menés dans le cadre de collaborations avec d'autres laboratoires notamment le LGEP (Paris Sud), le GREAH (Université du Havre), TEMPO (Université de valencienne), DynFluid (ParisTech ENSAM), L'Université Technique de Cluj-Napoca (Roumanie), l'ENIS (Tunisie)

b. **Etude et conception sur cycle de vie de systèmes de récupération des ressources renouvelables**

Ces études sont menées en relation avec les problématiques associées à l'intermittence de l'énergie à travers une gestion optimisée. La spécificité de notre groupe réside dans le couplage des optimisations du dimensionnement des systèmes et de leurs lois de gestion d'énergie en y intégrant la prise en compte des mécanismes de vieillissement des parties les plus vulnérables. A titre d'illustration, nous pouvons citer les travaux menés sur les houlogénérateurs directs dans le cadre du projet ANR QUALIPHE (programme PROGELEC), en collaboration avec le Laboratoire d'hydrodynamique (LHEEA) et l'IRCCyN de Nantes, mais également sur l'intégration du stockage dans le grand éolien permettant d'atténuer les écarts engagement-production avec EDF R&D. Enfin, le dernier exemple concerne la récupération de l'énergie en environnement humain (éclairage, mouvements et chaleur du corps) pour l'alimentation de systèmes communicants nomades (PEPS CNRS) en collaboration avec le Laboratoire M2S (Mouvements, Sport et Santé) et l'IRISA.

c. **Elaboration de méthodologies génériques de modélisation formelle ou semi-analytique et de conception.**

Dans ce contexte, nous développons des méthodes de modélisation électromagnétique 2D et 3D à base de résolution formelle des équations de Maxwell dans des géométries de transducteurs « complexes » et leur couplage aux approches semi-analytiques. Par ailleurs, au-delà des modèles mathématiques précités, nous développons des méthodologies d'optimisation intégrant des critères de conception sur
cycle de vie. Dans ce cadre, la thèse de Vincent Debusschere intitulée « Contributions méthodologiques à l'éco-conception des convertisseurs électromagnétiques d'énergie » a reçu le prix de la meilleure thèse en Génie Electrique du GDR SEEDS/Club EEA en 2010. Enfin, nous menons des travaux sur les outils de conception générique via une approche par optimisation topologique très efficace pour les problèmes ouverts (collaboration avec l'Université Catholique de Louvain, Belgique).

d. Maitrise des systèmes électriques.

Notre originalité dans ce domaine réside dans la double action menée à la fois sur la synthèse de lois de commande de systèmes de génération d'énergie, et sur la conception d'architectures matérielles FPGA optimisées permettant la mise en œuvre « temps-réel » d'algorithmes de commande performants. Le domaine des applications embarquées est plus particulièrement visé. Nous avons ainsi pu réaliser plusieurs architectures matérielles de commandes innovantes d'alterno-démarreur sans capteur mécanique (THALES AES) ainsi que des propositions de partitionnement optimisée matériel/logiciel pour ce type de commandes (SAFRAN, SEFORA). Par ailleurs, nous travaillons à développer des architectures toujours plus complexes incluant l'identification en ligne des systèmes à contrôler ainsi que des fonctionnalités de type commande prédictive. Des travaux de simulation temps réel à base de FPGA sont également en cours, qui visent à reproduire avec exactitude les phénomènes de commutation au sein des convertisseurs statiques (LEROY SOMER).

A 4.2. Les personnels du pôle CSEE
A 4.2.a. Les personnels permanents

Depuis le précédent rapport de contractualisation, le pôle CSEE s'est structuré en 3 groupes (EPI, MME, SETE) pour une meilleure visibilité de leurs spécificités, et pour renforcer leurs interactions, tout en partageant des chercheurs (et des projets) en commun (1 CR partage ses activités entre MME et SETE, 1 MCF partage des activités entre EPI et SETE). Le quatrième groupe (TN) est arrivé au premier janvier 2013 à l'occasion de la réorganisation des laboratoires de l'IFSTTAR (le LTN en l'occurrence). Là aussi le partenariat ancien entre EPI et le LTN favorise les projets intra-pôles (deux docteurs formés conjointement par le LTN et SATIE sont devenus MCF et CR).

La répartition des chercheurs et enseignants chercheurs du pôle est donnée dans le tableau ci-après en fonction des années, les effectifs de TN ne sont pas indiqués dans le bilan. Dans la suite, on ramènera les divers indicateurs à l'équivalent chercheur temps plein (CTP). Par ailleurs, on cumulera sur la période les CTP de façon à faire apparaître un nombre total de CTP.an qui sera utilisé pour calculer les ratios des différents indicateurs de la période rapportés au CTP et à l'année.

<table>
<thead>
<tr>
<th>Année</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>Moyenne Période</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTP</td>
<td>9,5</td>
<td>10</td>
<td>11</td>
<td>11,5</td>
<td>14</td>
<td>14</td>
<td>11,7</td>
</tr>
<tr>
<td>Tot. Pers.</td>
<td>18</td>
<td>19</td>
<td>21</td>
<td>22</td>
<td>25</td>
<td>25</td>
<td>21,7</td>
</tr>
<tr>
<td>CR</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1,7</td>
</tr>
<tr>
<td>EC</td>
<td>17</td>
<td>18</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>22</td>
<td>20</td>
</tr>
<tr>
<td>IE-IR</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Tableau 5 : Personnel permanent du pôle CSEE par catégorie

Le tableau ci-dessus met en évidence que le pôle CSEE est très majoritairement pourvu en enseignants chercheurs (EC) soit 81% des effectifs. Le nombre d'EC évolue sensiblement sur la période. La proportion des PU+MCF HDR en 2013 est de 8/21 soit 38% des EC. Le nombre de chercheurs permanents est passé de 1 à 3 : nous avons réussi en 2012 le recrutement d'un nouveau CR CNRS dont les activités concernent les groupes MME / SETE.

1 On considérera qu'un enseignant-chercheur correspond à 0,5 CTP.
Par ailleurs, un chercheur contractuel CNRS, bénéficiant de la loi Sauvadet du 12/03/2012 est passé en CDI au 01/10/2012.

Cette évolution du nombre des CTP traduit les premiers efforts faits pour accroître cette catégorie de chercheur dans le pôle ; il nous faudra les maintenir dans le prochain quinquennal. Enfin, l'intégration du groupe TN va renforcer significativement le bilan en CTP (+8) et en IR-IE (+4).

La diversité d'origine et de localisation des personnels du pôle CSEE représente une complication de fonctionnement pour tous les groupes hormis MME composé de CR CNRS et d'EC de l'ENS. Les autres groupes sont composés d'EC issus d'autres établissements2, ou alors ils sont distribués en termes d'activités de recherche entre plusieurs sites3 (ENS Cachan : 16 chercheurs, ENS Ker Lann : 2 chercheurs, CNAM Paris : 2 chercheurs, UCP : 5 chercheurs). Cette difficulté a toutefois été correctement gérée lors du précédent quadriennal et un mode de fonctionnement satisfaisant a pu être trouvé. La rénovation des plates-formes du site de Cachan (2013) allège quelque peu cette contrainte.

Le personnel technique est une catégorie de personnel indispensable à une recherche efficace (maintenance des équipements, appui aux expérimentations, capitalisation,...). Le pôle CSEE en est chroniquement sous-doté puisqu'il compte seulement 1 ingénieur de recherche CNRS, 1 ingénieur d'études CNAM et 1 technicien (CDD sur projets participatifs ANR/FUI) pour les 25 chercheurs ayant quasiment tous des activités expérimentales. Dans un contexte national de restriction budgétaire, il nous faudra trouver des solutions de renforcement de ces moyens. Outre l'intégration des coûts salariaux de CDD dans les demandes de financement, la possibilité de mutualiser les ressources humaines du département EEA de l'ENS Cachan est une autre voie de réflexion qui nécessite l'aval de toutes les tutelles et mais aussi, naturellement, l'intérêt et l’assentiment des personnels concernés. La pyramide des âges des personnels chercheurs du pôle CSEE peut être considérée comme relativement jeune : plus de la moitié des non HDR ont moins de 40 ans. Sept chercheurs HDR du pôle (sur les 8) sont rattachés à l'école doctorale de l'ENS Cachan (EDSP).

Toutefois, malgré un contexte général de rationalisation des moyens d'enseignement et de recherche, le CNAM l'ENS Cachan et le CNRS ont continué sur la période à soutenir le pôle par l'affectation de 4 postes de MCF d'un IR à temps partagé, d'1 CR et d’1 chercheur CNRS en CDI.

A 4.2.b. Les personnels non permanents

Les doctorants et post-doctorants constituent les personnels non permanents du laboratoire. Le tableau ci-après indique l'évolution de leur nombre et des thèses soutenues sur la période. On peut remarquer que chaque chercheur (toutes catégories confondues) encadre 2 doctorants en moyenne annuelle. Le flux de thèses soutenues correspond approximativement à 1 thèse soutenue par an et par HDR soit encore 0,7 thèse soutenue/chercheur temps plein. Ce chiffre assez élevé traduit un bon dynamisme pour trouver les financements mais aussi la bonne attractivité du laboratoire. Notons que les thèses en partenariat avec un laboratoire extérieur et en cotutelle représentent respectivement 31% et 10% du total sur la période. Ces chiffres montrent la culture de partenariat du pôle CSEE aux niveaux national et international.

La durée moyenne des thèses s’élève à 3 ans 6 mois, cela correspond en fait à une durée de 3 ans 3 mois de la plupart des thèses ; quelques-unes durant plus longtemps (enseignants du secondaire en poste, congé maladie ou grossesse). Enfin, trois thèses n'ont pas été soutenues, exclusivement pour des raisons personnelles spécifiques, soit 6% du total sur la période.

<table>
<thead>
<tr>
<th>Source de financement</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>Juin13</th>
<th>Moyenne</th>
<th>Période</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contrats doctoraux</td>
<td>16</td>
<td>16</td>
<td>18</td>
<td>17</td>
<td>17</td>
<td>13</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Contrats collaboratifs publics</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>9</td>
<td>12</td>
<td>10</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Contrats collaboratifs privés</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>11</td>
<td>8</td>
<td>4</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Bourses organismes publics (DGA, CNRS, INRIA, CEA ...)</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Bourses organismes français</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>8</td>
<td>9</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

2 Répartition en EC pour EPI : ECENS =11%, ECCNAM =46%, ECUPEC =21%, ECP10 = 11%, ECUCP= 11%.
3 Localisation des EC de SETE : ECENS =33%, ECGrgp =48%, EC_KerLann =19%.
Tableau 6 : Nombre de thèses annuelles par catégorie

Le graphique ci-après présente les modes de financement des thèses. On observe en considérant les chiffres moyens sur la période que les financements sous la forme d'allocations (dont 36% d'allocations couplées pour normaliens) se montent à environ 40% du total, suivi par les financements CIFRE (20%) puis par les financements sur projets (18%), cet ensemble constitue donc plus de 80% de nos financements. Les 20% restants se répartissent sur des modalités plus occasionnelles (organismes publics, étranger, ..).

Figure 4 : Modes de financements des doctorants

Le devenir des doctorants sur la période a été arrêté en considérant la situation professionnelle des docteurs en 2013. Le premier constat est que 100% des doctorants formés ont un emploi et que pour 90%, cet emploi est stable. On observe que 1/3 de nos doctorants sont accueillis par des entreprises, un 1/3 deviennent enseignants (14%) du secondaire ou enseignants-chercheurs (19%), que 10% vont en post-doctorat, enfin qu'environ 20% trouvent un emploi (public et privé confondus) dans leur pays d'origine (catégorie « autre »). Notre pourcentage de doctorants qui deviennent chercheurs à temps plein est faible, ce qui est à corrêler avec les modes de financement, les thématiques de recherches tournées vers l'entreprise, la « coloration » dominante en enseignants-chercheurs, mais également des fortes exigences de recrutement (sélectivité, mobilité, …).

La parité des genres est déséquilibrée : les thématiques de l'énergie électrique restent peu attractives pour les femmes. Une réflexion et des actions à ce sujet sont à conduire ; rappelons cependant que le pourcentage de femmes dans les écoles d'ingénieur du secteur STI fluctue entre 15 et 20%, il en va sensiblement de même de la parité des enseignants chercheurs de la 63ème section du CNU. Notre chiffre est donc cohérent quoique (trop) faible.

Tableau 7 : Devenir des doctorants, parité

<table>
<thead>
<tr>
<th>Devenir des doctorants</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>total</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>chercheurs temps plein</td>
<td>15</td>
<td>13</td>
<td>12</td>
<td>18</td>
<td>9</td>
<td>9</td>
<td>63</td>
<td>2%</td>
</tr>
<tr>
<td>Enseignants-chercheurs</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>19%</td>
</tr>
<tr>
<td>ingénieurs</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>14</td>
<td>33%</td>
</tr>
<tr>
<td>PRAG/enseignants du secondaire</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>14%</td>
</tr>
<tr>
<td>post-doctorants</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>10%</td>
</tr>
<tr>
<td>autre (retour pays)</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>9</td>
<td>21%</td>
</tr>
<tr>
<td>Parité</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>femmes</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>12%</td>
</tr>
<tr>
<td>hommes</td>
<td>6</td>
<td>4</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>2</td>
<td>37</td>
<td>88%</td>
</tr>
<tr>
<td>total</td>
<td>7</td>
<td>5</td>
<td>9</td>
<td>11</td>
<td>8</td>
<td>2</td>
<td>42</td>
<td></td>
</tr>
</tbody>
</table>
Nous accueillons régulièrement des chercheurs à temps plein (post-doctorants) ou partiel (ATER) comme indiqué dans le tableau suivant.

<table>
<thead>
<tr>
<th>Post-Doctorants / ATER</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>16</td>
</tr>
</tbody>
</table>

Pour clore ce bilan concernant les personnels non-permanents, précisons que nous accueillons en moyenne 7 à 8 stagiaires de Master recherche, essentiellement venant du master IST PIE.

A 4.3. Faits marquants du pôle

A 4.3.a. Faits marquants scientifiques

- Convertisseur DC-DC 28V/20W basé sur un transformateur piézoélectrique validé pour des applications spatiales développé en partenariat avec le CNES (2010).
- Record mondial de coercivité pour un aimant ferrite anisotrope massif (0,4 T) synthétisé par frittage flash (SPS) d'une nano-poudre de ferrite de baryum (2010).
- Réalisation d'une inductance monolithique fonctionnelle utilisant une bobine de cuivre frittée dans un noyau de ferrite (2010, brevet et extension internationale en cours).
- Optimisation couplée des lois de gestion d’énergie au dimensionnement de systèmes énergétiques. Application aux houlogénérateurs directs.
- 3 brevets pour le développement d'un procédé de réalisation d'un matériau composite aluminium – métal.

A 4.3.b. Partenariats marquants

- Participation à deux Instituts d'Excellence en Energies Décarbonnées : France Energies Marines et VEDECOM (via l’UCP).

A 4.3.c. Rayonnement :

- Première thèse en cotutelle Franco-Indienne entre l'Université Devi Ahilia (Indore) et l'ENS Cachan en décembre 2008.
- Soutenance de la première thèse en cotutelle entre l’Université Nationale de Taiwan (NTU) et l’ENS Cachan, YP Liu, octobre 2009 « Design & implementation of piezoelectric technology based power devices ».

A 4.3.d. Récompenses distinctions :

- Best paper award, conférence PCIM 2008 (power conversion & intelligent motion), Mohand Arab, 2008.
- Lauréat du "2009 EPE Outstanding Achievement Award", lors du congrès EPE, Barcelone, Jean-Paul Louis, 2009.
- Prix des meilleurs papiers « jeunes chercheurs » à la conférence CEM 2010 : Denis Labrousse, Fabien Adam.

A 4.4. Réalisations du pôle

A 4.4.a. Production scientifique

Le tableau 10 présente l'ensemble de la production scientifique du pôle CSEE sur la période. On pourra noter une production croissante, équilibrée et de haut niveau entre les revues à comité de lecture* et les conférences internationales, mais aussi une contribution significative dans la diffusion des connaissances (ouvrages, vulgarisation, etc.), preuve du souci de large diffusion des connaissances récentes. Globalement chaque chercheur temps plein produit en moyenne annuelle 7,5 documents diffusés. Pour mesurer les travaux en collaboration, nous avons fait apparaître dans le tableau les productions co-publiées avec des chercheurs étrangers, avec des collègues du pôle SIAME et en intergroupe dans le pôle CSEE. Ainsi, on observe que 11 % d'articles (revues +conférences internationales) sont co-

* Les revues internationales en question ont un « impact factor » supérieur ou égal à 0,6.
publiées avec des chercheurs étrangers, 3 % le sont en inter-pôle et 5% en intergroupe. Ces chiffres sont en accord avec l'organisation du pôle : on observe bien que les groupes ont une identité propre et qu'ils interagissent en cohérence avec les objectifs scientifiques de CSEE. Les interactions avec SIAME sont plus faibles. En fait, elles commencent seulement à se mettre en place ; les projets en cours devraient aider à faire progresser cet indicateur, comme on le verra plus loin. Il nous semble que l'objectif de 15% est un bon équilibre pour ces deux indicateurs. Enfin, le chiffre de co-publications avec des chercheurs étrangers paraît équilibré.

La qualité de la production scientifique peut être évaluée par le fait qu’environ 37% de nos articles sont publiés dans des revues IEEE et qu’environ 25% le sont dans des revues liées à la physique et aux matériaux (JMMM, Journal of Applied Physics, Applied Physics, etc...).

Tableau 8 : Production scientifique

La production de brevets du pôle CSEE a évolué par rapport au précédent quadriennal. Le choix a été fait de limiter les dépôts à ceux réellement stratégiques. Le mode de financement prépondérant via des programmes participatifs a limité le partenariat bilatéral direct avec les entreprises et donc le dépôt de brevets.

Tableau 9 : Brevets

A 4.4.b. Interactions avec l’environnement social, économique et culturel

Les indicateurs financiers sont présentés sur les graphiques ci-après par type de financement et hors salaires. On observe un budget croissant sur la période, essentiellement abondé par les ANR (42%) puis par les FUI (35%) puis par les contrats industriels directs (12%). Les financements européens restent faibles (6%), ce qui s'explique d'une part par le manque de moyens logistiques pour les suivre, d'autre part par l'investissement fort du pôle dans les programmes ANR/FUI notamment dans les secteurs des transports. Ceci est aussi la conséquence des partenariats traditionnels et antérieurs aux projets sur programme avec les industriels de l'aéronautique, du ferroviaire et de l'automobile. Ces faiblesses logistiques et la prédominance des EC de diverses tutelles dans le personnel de CSEE restreignent aussi la

5 Les données sont incomplètes pour l'année 2013, la collecte est arrêtée au 01/06.
capacité des chercheurs du pôle à piloter des programmes nationaux. Cependant l'intégration du LTN, composé de 7 chercheurs et de plusieurs ingénieurs de recherche, devrait permettre d'améliorer cette situation.

Le financement par CTP se monte à environ 70k€/an sur la période. Ces moyens ont permis le financement d'un nombre important de thèses mais aussi d'équipements onéreux (VSM, traceur de caractéristiques, moyens d'analyse physico-chimique, récepteur de mesures, analyseur de signaux, batterie lithium de puissance, etc.).

Figure 5 : Financements du pôle

L'interaction avec l'environnement sociétal et culturel peut être observée par la diffusion de connaissances qui constitue une culture forte du pôle CSEE. En effet, le tableau 6 montre que celle-ci se monte à 17% de la production totale sur la période de référence, ce qui est assez significatif.
A 5. Présentation du pôle Systèmes d'Information et d'Analyse Multi-Echelles (SIAME)

A 5.1. Politique scientifique et structuration du pôle

Quels que soient les domaines d'applications visés (énergie, industriel, santé-bien-être, environnement, communications ou même patrimoine culturel), la compréhension des processus complexes mis en œuvre est un enjeu capital, facteur d'innovations nécessitant une analyse transversale systémique pluridisciplinaire. La contribution scientifique et technologique recherchée par le pôle Systèmes d'Information et d'Analyse Multi-Echelles (SIAME) vise à développer des systèmes d'identification, de caractérisation et de traitement de l'information innovants de nature à répondre à cet enjeu. L'approche méthodologique commune originaire apportée par le pôle SIAME s'appuie sur la mutualisation de compétences d'ingénierie internes complémentaires mises en synergie au service du développement :

- de systèmes instrumentaux de détection et de caractérisation multi-capteurs et multi-physiques dont l'amélioration permet d'augmenter la sensibilité et les résolutions spatiale et temporelle à différentes échelles ;
- de théories des systèmes et d'estimation/détectio permettant le traitement d'information multiparamétrique pour la compréhension de phénomènes et de systèmes complexes ;
- d'élaboration de matériaux organiques-inorganiques et systèmes fonctionnalisés pour la mise au point de nouvelles générations de biocapteurs, bio-puces et bio-microsystèmes ;

Les activités scientifiques du pôle couvrent un champ relativement large allant de l'observation, l'identification, le diagnostic et le contrôle de systèmes physiques à l'étude et la conception de systèmes micro-structurés pour des applications biologiques et médicales autour de 3 groupes :

- Le groupe Méthodes et Outils pour les Signaux et Systèmes (MOSS) : regroupant le traitement du signal multidimensionnel, la commande de systèmes et l'extraction robuste des grandeurs d'influence, les problèmes inverses.
- Le groupe Instrumentation et Imagerie (II) : regroupant l'étude de capteurs et systèmes instrumentaux pour le CND, l'imagerie et l'élaboration de systèmes de caractérisation multi-physiques et multi-échelles.
- Le groupe BIO-Microsystèmes et bioSensors (BIOMIS) : privilégiant l'élaboration de bio-microsystèmes et biocapteurs utilisant de nouveaux matériaux fonctionnalisés.

Ce pôle est constitué de 28 chercheurs permanents issus de plusieurs communautés scientifiques majoritairement relatives aux sections du CNU 63, 61 (CNRS 7, 8). Compte tenu des spécificités du pôle, quelques chercheurs physico-chimistes et biochimistes issus des sections CNU 31 et 64 (CNRS 13) en sont également membres. Cette composition résulte d'une nécessité d'adopter une approche systémique transversale et pluridisciplinaire qui vise à intégrer les contraintes industrielles et applicatives dans une réflexion plus fondamentale concernant :

Les technologies de l'information associant développement de nouveaux traitements de signaux, algorithme de contrôle commande, et modèles multidimensionnels associés au développement de systèmes instrumentaux innovants et utilisant simultanément des approches technologiques multi-physiques et multi-échelles.

L'analyse de matériaux et de milieux complexes tant pour la compréhension des interactions à différentes échelles de phénomènes physiques, physico-chimiques et biologiques, que pour le contrôle et le suivi des phénomènes complexes associés.

En synergie avec cette approche, le pôle contribue à la mutualisation de plateformes de recherche situées sur chacun des sites : à l'Ecole Normale Supérieure de Cachan (en lien avec l'Institut d'Alembert (l'IDA)), structure fédérative FR 3242 regroupant quatre unités de recherche complémentaires en physique fondamentale et appliquée (LPQM et SATIE), en chimie (PPSM) et dans les sciences de la vie (LBPA)) ; à l'Ecole Normale Supérieure de Bretagne à Ker Lann (au sein du collège de recherche Hubert Curien, structure fédérative regroupant Sciences fondamentales, Sciences humaines et sociales, et Sciences pour l'ingénieur), et à l'Université de Cergy-Pontoise (au sein de deux plateformes fédératives : l'une regroupant les techniques Laser dans le cadre du LabEx PATRIMA et de l'EquipEx PATRIMEX regroupant les activités transversales en lien avec les techniques de caractérisation, de restauration, et de conservation du patrimoine culturel matériel ; l'autre dédiée à la santé et les cosmétiques dans le
cadre d'un projet de Plate-Forme Mutualisée d'Innovation (PFMI COSMETOMIQUE) initiée par SATIE et le pôle de compétitivité Cosmetic Valley, destiné à valoriser les nouveaux systèmes de mesure d'efficacité et d'innocuité des produits mis au point par l'ensemble des acteurs spécialisés du territoire du pôle).

A 5.1.a. Groupe Méthodes et Outils pour les Signaux et Systèmes (MOSS)

Les travaux de recherche du groupe MOSS s'appuient sur deux disciplines : le traitement du signal et l'automatique. L'objectif scientifique de l'équipe est de contribuer à une meilleure compréhension et à une meilleure maîtrise des systèmes complexes. Dans le cadre général de la théorie de l'estimation et de la théorie des systèmes, plusieurs sujets sont abordés avec les adaptations théoriques nécessaires à chaque cas.

a. Estimation et détection en traitement d'antenne

Mots clés : Traitement d'antenne, estimation robuste, radar, identification, radiocommunications

Cette activité concerne principalement l'estimation et la détection en traitement multcapteurs. Les travaux menés sont majoritairement d'ordre méthodologique, mais des projets tournés vers des applications sont également développés tant en interne qu'en collaboration avec d'autres partenaires. Les applications se déclinent notamment dans le domaine du traitement de signaux électromagnétiques : Radar, Radiocommunications, et maintenant aussi en CND et la tomographie.

b. Algorithmes de traitement du signal Multi-capteurs

Les algorithmes d'imagerie en Radar à Ouverture Synthétique s'appuient sur un modèle de points brillants isotropes. Or, dans de nombreux cas, les objets d'intérêt peuvent être modélisés plus finement par un ensemble d'objets canoniques comme des plaques métalliques, dièdres, dièdres... qui permettent de prendre en compte les propriétés de directivité, fréquence, polarimétrie.

Les travaux menés dans le cadre de la thèse de Frédéric Brigui ont permis de développer des détecteurs appropriés améliorant sensiblement les performances de l'imagerie à synthèse d'ouverture.

De manière générale, les données Radar sont de nature multidimensionnelle : dimensions temporelles, spatiales, polarimétriques, multistatiques. Dans ce contexte, la thèse de Maxime Boizard actuellement en cours au sein du laboratoire explore de nouveaux filtres spatio-temporels tensoriels exploitant des représentations issues de l'algèbre multilinéaire.

L'utilisation de Nouvelles Formes d'Ondes (NFO) de type « télécommunications » dans le domaine du Radar a été entreprise lors de notre participation au Projet d'Etude Amont DTC/NFO de la DGA. Nous y avons étudié de nouveaux traitements adaptés aux propriétés particulières des NFO (non-circularité et/ou cyclostationnarité) avec des améliorations potentielles en détection, estimation, filtrage d'antenne et lutte contre les brouilleurs. Une analyse de performance basée sur la borne minimale de Cramer-Rao a été entreprise pour ce type de NFO. Le « compressed sensing » et l'estimation parcimonieuse ont aussi été envisagés comme base pour la définition de signaux NFO.

En Radar monopulse, nous avons généralisé les techniques d'estimation à des sources étendues sous différents modèles de Swerling, obtenant ainsi les centroïdes et l'étendue des sources.

En matière de géolocalisation à l'aide de stations multi-capteurs distantes, les algorithmes que nous développons relèvent d'une estimation paramétrique des caractéristiques physiques permettant une localisation géographique non-ambiguë, de manière non-ambiguë, contrairement aux méthodes classiques en 2 étapes nécessitant une phase d'appariement des coordonnées. Pour cela, nous avons proposé des algorithmes en une étape qui travaillent simultanément sur tous les capteurs. Les performances atteignables sont bien meilleures, mais la grande ouverture du réseau rend le problème large bande. Nous menons aussi les études de performances associées, afin de définir les gains attendus par rapport aux techniques classiquement utilisées. La finalité de ces études théoriques est bien entendu de définir un système de radiolocalisation multi-capteurs opérationnel.

La matrice de covariance est au cœur de la plupart des méthodes d'estimation paramétrique en traitement du signal multi-capteurs. L'estimateur habituel dans ce contexte est la Matrice de Covariance Empirique (MCE). Toutefois, dans le cas de données impulsives, la MCE est un très mauvais estimateur. Dans ce cadre, il faut développer une estimation robuste de la matrice de covariance, les M-estimateurs en sont des alternatives. Leur étude ainsi que leur
application à des problèmes de traitement d'antenne et de détection adaptative a fait l'objet, au sein du laboratoire, des thèses de Guilhem Pailloux et de Mélanie Mahot.

Ces travaux ont permis de déterminer les performances statistiques asymptotiques des M-estimateurs de la matrice de covariance de signaux complexes, et de caractériser la statistique de plusieurs tests de détection en environnement non gaussien.

Les systèmes de sécurité des réseaux sans fil sont basés sur des primitives cryptographiques qui n'empêchent pas l'existence de nombreuses failles. S'appuyer sur la physique est un moyen bien connu pour générer un aléa non cassable par des méthodes mathématiques. Ainsi, le caractère aléatoire de la propagation électromagnétique dans un réseau sans fil, qui fixe les « limites fondamentales du secret » telles que définies par C. Shannon, et la localisation spatiale de ces nœuds permettront l'obtention d'un encryptage dynamique. Il faut alors identifier le canal de propagation radio-mobile à l'aide de sa réponse impulsionnelle complexe. Nous remettons actuellement en service, avec le laboratoire LTCI de Télécom ParisTech, un sondeur large bande de canal. Cet appareil nous permettra l'estimation des réponses impulsionnelles du canal de propagation et la définition dynamique de clef d'encryptage.

Ce travail fait l'objet d'une collaboration avec le LSV (Laboratoire de Spécification et Vérification, CNRS-ENS Cachan) dans le cadre du projet de l'Institut Farman DECORR et avec le laboratoire DSPCom de l'université de Campinas (UNICAMP), São Paulo, Brésil.

Ces travaux sont menés en collaboration avec les universités d'Aalborg et de Technion.

c. Étude de performances

Nous avons calculé les performances d'estimation d'un traitement des signaux issu d'un réseau de capteurs en tenant compte des erreurs de modèles. Les expressions analytiques obtenues permettent de définir la qualité de la calibration à introduire dans les chaînes de réception. En présence de plusieurs sources nous avons aussi déterminé les performances d'estimation en tenant compte de la probabilité de résolution de sources proches.

Nous travaillons à la mise au point de bornes minimales d'estimation qui rendent compte des performances optimales dans des conditions sévères et qui montrent bien les seuils de décrochement par rapport à la borne de Cramer Rao qui, elle, n'est valable qu'asymptotiquement. Nous avons introduit plusieurs bornes plus pertinentes que celles de la littérature.

d. Analyse et maîtrise de systèmes variables

Mots clés : Tolérance aux fautes, systèmes variables, grands systèmes, approches algébriques

Sous le thème générique des « systèmes variables », les activités de recherche relevant de l'Automatique couvrent des aspects théoriques et méthodologiques. Plusieurs sujets de recherche sont orientés par des applications qui servent comme un révélateur de problématiques nouvelles. Trois thèmes ont été développés dans la période 2008-2013.

e. Conception de systèmes tolérants aux fautes

Ce sujet de recherche porte sur la conception de systèmes tolérants aux fautes, soit par une stratégie d'accommodation, basée sur une estimation du modèle de défaillance, soit par une stratégie de reconfiguration, qui ne gêne que la partie restée saine du système. Dans les deux cas, il s'agit de satisfaire des spécifications données (nominales ou dégradées).

L'estimation du modèle de défaillance ne peut se faire qu'en ligne, et pose les problèmes de rapidité et de précision, que nous abordons par la conception d'observateurs adaptatifs. La reconfiguration autorise le calcul hors ligne d'une banque de contrôleurs, spécifiques à chaque sous-ensemble de composants restés sains (une configuration du système). Elle pose des problèmes de complexité combinatoire, que nous abordons par l'analyse des propriétés de monotonie dans le treillis des configurations.

Dans les deux cas, il est important de donner, outre les méthodes de conception des algorithmes, des procédés de caractérisation des défaillances recouvrables. Nous avons développé différentes mesures (déterministes ou non) de cet ensemble pour évaluer la tolérance aux fautes du système, et l'utilité / criticité de ses différents composants.
f. Stabilisation, estimation et commande pour les grands systèmes

L'activité de recherche autour de ce thème porte sur les problèmes classiques en Automatique : stabilisation, estimation et commande pour des systèmes linéaires de grande dimension et exhibant des incertitudes paramétriques dans leurs modèles. Ce sont des applications en réseau électrique, en réseau de télécommunications sans fil, en optique adaptative et en mécanique des fluides qui ont orienté les approches pour trouver des solutions aux problèmes posés.

Les travaux sur la stabilisation du réseau électrique ont montré l'équivalence entre des notions propres aux grands systèmes électriques (synchronie) et les notions de commandabilité et d'observabilité en automatique. Cela a permis d'appliquer des méthodes de réduction de modèles classiques (utilisation des grammiers de commandabilité et d'observabilité) aux grands systèmes électriques, de manière ensuite à rendre possible la conception de lois de commande améliorant le comportement du réseau (amortissement des oscillations interzones).

Une méthodologie de réduction de modèles dynamiques des grands systèmes électriques avec la préservation de la structure physique a été donnée dans la thèse CIFRE de B. Mallem (collaboration avec RTE).

Pour un réseau de télécommunications sans fil, le problème posé était de répartir d'une manière optimale la puissance disponible afin de satisfaire le maximum d'utilisateurs tout en garantissant une qualité de service acceptable. Le modèle établi doit être simple et permettre des calculs en temps réel. Une approche décentralisée a été retenue utilisant les outils de la commande optimale et de la théorie des jeux. Ceci autorise une répartition de la charge et le développement d'une technique opportuniste pour améliorer la qualité de service.

Ce travail a été conduit dans le cadre de la thèse en cotutelle de F. de Sousa Chaves, en collaboration avec le laboratoire DSPCom de l'université de Campinas (UNICAMP), São Paulo, Brésil.

Les problèmes d'estimation et de commande en optique adaptative sont abordés dans le cadre du projet ANR CHAPERSOA en collaboration avec l'IOGS (coordinateur du projet), de l'ONERA et du LAOG (Laboratoire d'Astrophysique de l'Observatoire de Grenoble). Le travail entrepris consiste à concevoir des estimateurs robustes capables de donner la forme d'onde supposée après le passage par les couches atmosphériques. L'objectif est ensuite d'utiliser cette estimation pour calculer une commande agissant sur un miroir déformable pour remettre l'onde « à plat » et retrouver une image peu perturbée. Une thèse est en cours et un post-doc de 18 mois a été réalisé dans le cadre de ce contrat ANR.

Pour les problèmes de commande de l'écoulement en mécanique des fluides, les travaux sont entrepris en commun avec le LIMSI (UPR CNRS associé à l'université Paris-Sud). Deux problèmes sont examinés et font l'objet de deux thèses en codirection : le contrôle de la couche de cisaillement d'un écoulement de cavité (financement RTRA DIGITEO) et l'atténuation de la traînée d'un corps dans un écoulement par contrôle actif. Des bancs expérimentaux ont été développés grâce au concours du LIMSI.

Les problèmes d'estimation et de commande en optique adaptative sont abordés dans le cadre du projet ANR CHAPERSOA en collaboration avec l'IOGS (coordinateur du projet), de l'ONERA et du LAOG (Laboratoire d'Astrophysique de l'Observatoire de Grenoble). Le travail entrepris consiste à concevoir des estimateurs robustes capables de donner la forme d'onde supposée après le passage par les couches atmosphériques. L'objectif est ensuite d'utiliser cette estimation pour calculer une commande agissant sur un miroir déformable pour remettre l'onde « à plat » et retrouver une image peu perturbée. Une thèse est en cours et un post-doc de 18 mois a été réalisé dans le cadre de ce contrat ANR.

Pour les problèmes de commande de l'écoulement en mécanique des fluides, les travaux sont entrepris en commun avec le LIMSI (UPR CNRS associé à l'université Paris-Sud). Deux problèmes sont examinés et font l'objet de deux thèses en codirection : le contrôle de la couche de cisaillement d'un écoulement de cavité (financement RTRA DIGITEO) et l'atténuation de la traînée d'un corps dans un écoulement par contrôle actif. Des bancs expérimentaux ont été développés grâce au concours du LIMSI.

g. Théorie des systèmes et analyse algébrique :

Des techniques algébriques sont mises à profit dans ce thème pour résoudre des problèmes liés à la théorie des systèmes. Les premiers résultats concernent la dualité entre l'étude des systèmes linéaires par l'approche de la théorie des modules (développée notamment par M. Fliess) et celle dite « behaviourale » due à J. Willems. Cela a conduit à dégager la notion de module co-générateur pour une sous-catégorie et à éliminer les conditions usuelles d'injectivité des espaces de signaux. Dans une seconde étape, les relations entre la dualité au sens de l'algèbre homologique et celle au sens des espaces vectoriels topologiques ont été étudiées. Tous ces résultats ont été appliqués aux systèmes à retards.

Des contributions ont également été réalisées sur la théorie des pôles et de la stabilité des systèmes linéaires instationnaires. Il a été montré que la notion de pôle, classique pour les systèmes linéaires stationnaires de dimension finie, pouvait s'étendre aux systèmes linéaires instationnaires. On obtient alors, en fonction de ces pôles, une condition nécessaire et suffisante de stabilité exponentielle analogue à celle que l'on connaît pour les systèmes linéaires stationnaires. Ces nouvelles caractérisations ont permis d'obtenir les premiers résultats de commande par placement des pôles par retour de sortie pour les systèmes linéaires instationnaires. Ces résultats s'appliquent aussi à la commande des systèmes non linéaires autour de trajectoires non triviales données (pas de point d'équilibre). En étudiant la structure à l'infini des systèmes linéaires instationnaires, une paramétrisation de la classe des compensateurs propres a été donnée pour les problèmes de poursuite exacte de modèle et de découplage.
Les techniques de l'algèbre linéaire sont aussi mises à contribution pour étudier les équations matricielles couplées de Riccati issues de problèmes de théorie des jeux dynamiques. L'utilisation des faisceaux matriciels permet de générer l'étude des équations de Riccati non symétriques et de s'affranchir de certaines contraintes techniques pour obtenir l'ensemble des solutions. L'exploitation de la structure particulière de la matrice caractéristique associée à un jeu de Nash en boucle ouverte a permis de concevoir une méthode non itérative de placement de pôles par retour d'état en une seule étape. Aussi, la stratégie de Nash en boucle fermée a été revisitée pour permettre de tenir compte d'incertitudes sous forme polytopique. Enfin, des conditions nécessaires et suffisantes ont été établies pour déterminer la stratégie de Stackelberg avec une structure d'information en boucle fermée.

Ce travail a été mené en collaboration avec le CRAN et le département « Automatique et Systèmes » de l'université fédérale de Santa Catarina, Brésil, dans le cadre d'un projet de recherche CAPES-COFECUB.

A 5.1.b. Groupe Instrumentation et Imagerie

L'activité du groupe « Instrumentation et imagerie » (II) a pour objectifs l'étude et l'élaboration de capteurs et systèmes instrumentaux pour le CND, l'imagerie, et la caractérisation multi-physiques et multi-échelles. Dans la dynamique pluridisciplinaire du pôle, le groupe développe une approche systémique et instrumentale, associant l'observation des interactions ondes-matières à une modélisation et compréhension des caractéristiques physico- chimiques du milieu investigué. Compte tenu des milieux hétérogènes complexes étudiés, les systèmes instrumentaux et d'imagerie mis au point sont susceptibles d'utiliser plusieurs types d'ondes (électromagnétiques, mécaniques, et optiques) à plusieurs échelles. Les domaines d'applications concernés et collaborations associées couvrent un spectre large tant dans le domaine industriel (aéronautique, télécommunications) que les sciences de la vie (santé, cosmétique, environnement) et patrimoine culturel (restauration, conservation du patrimoine matériel).

a. Systèmes d’imagerie et cartographie électromagnétiques à différentes échelles

Mots clés : CND, instrumentation, imagerie, caractérisation de matériaux et fluides complexes, courants de Foucault, RF, radar, capteurs électromagnétiques, modélisation associée.

b. Systèmes multi-capteurs et d’imagerie à courants de Foucault

Afin de caractériser plus finement les paramètres des structures de formes complexes, électriquement conductrices (conductivité, épaisseurs, localisation de fissures éventuelles et mesure de leurs dimensions...) de nouveaux systèmes multi-capteurs et d'imagerie électromagnétiques basses fréquences (< qu centaines de kHz) dédiés à l'évaluation non destructive (END) par courants de Foucault (CF) sont développés. Ces travaux permettent d'aborder de manière concertée la conception du ou d'un réseau de capteurs, son instrumentation et la modélisation électromagnétique de ses interactions avec le milieu environnant afin d'identifier les défauts. Ainsi des systèmes d'imagerie 2D/3D pour la détection de défauts en aéronautique ont été développés. Citons le développement d'une sonde multi-capteurs, multifrquences CF dédiée à la mesure de profondeur de fissures débouchantes pendant des essais de fissuration (Sncema-Moteurs) ou l'imagerie de défauts dans des alésages d'attache de voilures aéronautiques (EADS). D'autres résultats ont été obtenus en collaboration avec Dassault-Aviation dédiés à la détection de fissures naissantes au voisinage de rivets. Associé à des techniques de séparations de sources adaptées, ce système s'est révélé très prometteur pour la détection de défauts structurels enfouis indépendamment de leur orientation. Enfin dans un autre domaine d'applications, un projet FUI piloté par Thalès « Matériaux Magnétiques pour Machines et Transformateurs (3MT) », (pôle de compétitivité ASTECH) , est en cours. La contribution du groupe II dans 3MT porte sur la conception et la caractérisation de capteurs magnétiques à Effet Néel (superparamagnétisme). A ce projet collabore étroitement la société Neelogy ancienne start-up de SATIE.

Ce projet est le résultat d'une collaboration inter-pôles (CSEE-SIAME), il implique le groupe EPI également dans le projet ANR FIDEA pour l'instrumentation électromagnétique de modules de puissance à semi-conducteurs.

c. Systèmes de caractérisation radiofréquence

A une échelle d'investigation différente, d'autres systèmes électromagnétiques utilisant les champs proches radiofréquences (RF) sont développés notamment pour la caractérisation diélectrique complexe de matériaux hétérogènes pas forcément conducteurs. Pour caractériser simultanément la conductivité et la permittivité, la gamme de
fréquence intermédiaire (1-100 MHz) est particulièrement bien adaptée. Les techniques associées permettent par exemple d'étudier les tissus biologiques soumis à des ondes radiofréquences ou matériaux biocompatibles. Le principe de caractérisation consiste à mesurer les courants de déplacement et les courants de conduction d'un milieu soumis à un champ magnétique RF imposé par un capteur développé au laboratoire. Afin d'optimiser la sensibilité de la mesure, le champ émis doit d'une part être suffisamment fort, et d'autre part le capteur doit être sensible aux petites variations du champ. Ces deux conditions sont simultanément atteintes si le capteur rayonnant est un résonateur à fort coefficient de qualité.

Un autre exemple de mise en synergie des travaux des deux pôles CSEE-SIAME concerne la mise au point d'un imageur 2D par RMN utilisant ce type de systèmes RF. Le but de cette thématique de recherche est de proposer à terme un outil clinique portable à faible coût pour l'imagerie de la peau.

Ce projet particulièrement ambitieux nécessite la mise au point de systèmes et de matériaux magnétiques innovants, le traitement des signaux et le contrôle ainsi que l'instrumentation RF. L'ensemble des savoir-faire internes à SATIE rend crédible sa réalisation.

d. Radar – traitement des signaux hyperfréquences

Enfin pour les champs lointains, des systèmes hyperfréquences plus particulièrement dédiés aux systèmes imageurs multistatiques et à la reconnaissance de cibles dans un environnement complexe sont nécessaires. Dans les thémes "systèmes Radar" et imageurs multistatiques les axes de recherche principaux sont : la modélisation des lois physiques qui décrivent l'interaction des capteurs avec la cible et l'environnement; le développement, l'optimisation, et la réalisation de systèmes multi-capteurs; les techniques de détection et d'estimation sur la base des signaux reçus par les capteurs. Une des applications s'oriente vers l'utilisation de systèmes multi-capteurs passifs construits autour de signaux GPS. A partir d'une étude sur le modèle de diffusion d'un cylindre elliptique, nous avons pu montrer que l'utilisation d'un système mono-fréquence multi-capteurs permet de localiser et de classifier ces cibles.

Le développement d'une chambre anéchoïde spécifique pour la validation expérimentale de systèmes radar multi-capteurs complexes et de techniques de traitements associées permettent la détection de différentes sources d'erreurs.

Ce travail s'inscrit directement dans le prolongement du Groupe de Travail Incertitude du GDR ondes. A terme, il s'agit d'utiliser ce moyen de mesure pour valider nos démarches théoriques et donc de mettre en place de nouveaux protocoles de mesure.

e. Systèmes d'investigations acoustiques à différentes échelles pour la caractérisation de matériaux

Mots clés : CND, instrumentation laser, caractérisation de matériaux et fluides complexes, capteurs acoustiques, EMAT, micro-rhéologie, modélisation associée.

L'un des moyens de caractériser l'évolution des matériaux complexes est d'assurer le suivi de leurs propriétés mécaniques. Nous proposons plusieurs techniques acoustiques basées sur le suivi des propriétés viscoélastiques utilisant des ondes de cisaillement ou de compression en volume.

f. Micro-rhéologie ultrasonore

Une nouvelle génération de rhéomètre ultrasonore (quelques MHz) se basant sur les propriétés piézoélectriques d'un quartz coupe AT générant des ondes de cisaillement, a été développée au laboratoire. Une étude approfondie des interactions mécaniques et électriques entre le capteur résonant et le matériau a permis d'augmenter considérablement la sensibilité de la mesure rhéologique haute fréquence. Un nouveau modèle électrique équivalent du capteur a pris en compte les effets électromagnétiques de l'ensemble capteur-matériel, les effets d'inertie, et les effets liés aux propriétés viscoélastiques. Il permet d'extraire en ligne les paramètres viscoélastiques tels que les modules élastiques et modules visqueux (G' et G''). La sensibilité de ce système ouvre de nouvelles perspectives dans l'élaboration et le contrôle de matériaux viscoélastiques. Associée au suivi de films hybrides organiques-inorganiques fonctionnalisés, cette thématique donne lieu au développement de nouveaux biocapteurs pour le diagnostic rapide (prolifération bactérienne, Biocorrosion, diagnostic de pathologie lourdes type Alzheimer, test sensoriel...)
Dans l'approche santé, cette technique ultrasonore ouvre un champ applicatif important dans le domaine du bien-être (PFMI Cosmétique) pour l'optimisation d'émulsions et crèmes en contact avec la peau, ou dans la compréhension du vieillissement des vernis (huile-résine) utilisés par les luthiers du 18ème siècle (PATRIMA-PATRIMEX).

g. Systèmes d’analyse des matériaux par techniques Laser et ultrasonores

La détection sans contact des ondes ultrasonores (US) par des systèmes instrumentaux LASER présente un atout important dans bon nombre d'applications car ils permettent de scanner le comportement vibratoire bidimensionnel voire tridimensionnel des matériaux à l'échelle nanométrique. Ces systèmes instrumentaux mis au point au laboratoire permettent une cartographie des interactions ondes / matériau donnant accès aux paramètres physiques du matériau analysé (du liquide au solide). L'extraction des caractéristiques physiques de ces matériaux passe par l'identification des propriétés locales d'ondes ultrasonores (ondes de Lamb et onde A) et la quantification des phénomènes transitoires dans les domaines espace (x, y) – temps (t) – nombre d'onde (k) – pulsation (ω) au moyen de l'analyse de Gabor 3D. Ces systèmes permettent également l'optimisation d'une nouvelle génération de capteurs capables de générer des ondes acoustiques à distance par induction magnétique RF (de la famille des EMAT, EMUS) qui utilise les compétences croisées en acoustique et en électromagnétique RF.

Dans un objectif de conservation et de restauration du patrimoine matériel, cette approche multimodale est appliquée pour la compréhension des phénomènes d'altération des structures (peintures, métaux, pierres). En collaboration étroite avec le l'IRD et l'ABB, une série de nouveaux systèmes couplant l'acoustique, l'optique et l'électromagnétique et incluant l'imagerie (LIBS-LIF-Raman) sont aujourd'hui en cours.

h. Analyse et modélisation des interactions ondes-milieux

Mots clés : Modèles semi-analytiques multidimensionnels, Modélisation DPSM, Transformée de Gabor, Radon.

Des traitements de signaux adaptés permettant de résoudre le problème inverse de manière numérique (Modélisation DPSM, Transformée de Gabor, Radon, …) sont mis en œuvre pour caractériser la propagation des ondes dans les milieux complexes afin d'en déduire des paramètres pertinents (tel que la fréquence, l'amplitude, l'atténuation, la célérité de l'onde, ou le coefficient de rétrodiffusion, …) contenant des informations sur le milieu analysé et les sources en jeu. Par une cartographie de ces paramètres en fonction des géométries une compréhension poussée des phénomènes de propagation qui découle à la fois d'une modélisation physique et d'une analyse multidimensionnelle des signaux transitoires correspondant devient possible.

i. Modélisation DPSM (Distributed Point Sources Method)

Afin de concilier les avantages des méthodes analytiques et des simulations numériques, SATIE a développé une méthode de modélisation semi-analytique exploitant les méthodes de singularités pour représenter des problèmes d'interaction entre des capteurs et leur environnement. Des évolutions peu consommatrices de ressources (10000 points de maillage en quelques secondes) basées sur cette méthode ont été développées pour la modélisation de capteurs magnétiques, ultrasonores, puis dans les cas électrostatique et électromagnétique.

Deux contrats (post doctorant) sont en cours avec l'ANDRA et l'IFFSTAR, EDF, pour la mesure de paramètres physicochimiques des sols par sonde électromagnétique. Une collaboration avec le LNE (thèse en cours) pour la mesure de champs magnétiques est également en cours. Enfin le développement de la méthode à la mécanique des fluides et une opération de soutien au transfert est également en cours avec le CNRS.

j. Analyse multidimensionnelle de signaux transitoires

Complémentaire au DSPM, l'analyse multidimensionnelle des phénomènes de propagation d'onde est indispensable dans la compréhension des mécanismes physiques pour décrypter et quantifier les séquences d'événements mis en jeu au cours de leur propagation. L'exploration des espaces de Fourier associés aux signaux à l'aide de méthodes développées en IRM (Chirp-z, transformée de Radon, identification) autorise une approche pseudo-transitoire dans l'espace vecteur d'onde-temps révélant les séquences de conversion de modes. L'analyse de Gabor
multidimensionnelle donne accès aux propriétés locales des ondes. Elle permet d'estimer la direction, le sens, l'amplitude et les périodicités spatio-temporelles au cours de la propagation des ondes. L'originalité réside dans l'application aux signaux ultrasonores multidimensionnels. Une des évolutions récentes majeures a été l'utilisation de l'espace de Radon dans le noyau d'analyse, permettant une finesse d'analyse inégalée de la direction de propagation des ondes. Par un filtrage d'onde multidimensionnel on peut remonter jusqu'aux courbes de dispersion d'une ou plusieurs ondes afin d'étudier leur interaction avec le milieu de propagation et d'en quantifier les phénomènes non-linéaires.

En collaboration avec l'Université de Leuven (Belgique) ainsi que celle de Nanjing (Chine), cette méthode a permis de révéler expérimentalement les conversions de modes à l'intérieur de fluides complexes, et les phénomènes de génération d'onde liés aux conditions limites et effets de bords du milieu de propagation.

La capacité de caractériser de tels signaux est primordiale dans le cadre de l'analyse de phénomènes multi-physiques

A 5.1.c. Groupe BIO-Microsystèmes et bioSensors (BIOMIS)

L'équipe BIOMIS consacre ses travaux de recherche aux défis scientifiques et technologiques posés par le développement de systèmes microstructurés et de bio-microsystèmes pour des applications en lien avec les sciences du vivant. Un des intérêts des systèmes microstructurés est de pouvoir placer des cellules biologiques vivantes ou des biomolécules fonctionnelles dans un environnement particulier, émulant par exemple les conditions normales de vie "in vivo". Cela permet d'obtenir des informations plus pertinentes sur les réactions biochimiques en jeu que lors d'une expérience "in vitro", avec notamment la possibilité d'évaluer les interactions entre des différentes lignées cellulaires (notion de co-culture), voire d'investiguer le fonctionnement interne de la cellule et de ses composantes (protéines membranaires, canaux ioniques …). C'est aussi un moyen de manipuler des cellules vivantes ou du matériel biologique avec à terme des objectifs thérapeutiques (thérapie génique par exemple). La réalisation de tels systèmes suppose d'intégrer au sein d'un même objet différentes fonctions biocompatibles (microfluidique, manipulation de cellules par des champs électriques, capteurs), ce qui constitue un défi technologique en soi.

Dans ce contexte, l'élaboration de matériaux fonctionnalisés par chimie douce est également un savoir-faire complémentaire devenu indispensable pour la réalisation de nouvelles générations de bio capteurs. Ces matériaux sont capables de réagir et de s'adapter à des modifications de l'environnement extérieur. Ce sont des matériaux complexes souvent hybrides organiques/inorganiques aux structures hiérarchiques qui ont pour intérêt d'insérer d'éventuelles molécules organiques dans une matrice minérale sans alterer leurs propriétés respectives. Leur structure interne peut être succinctement décrite par un ensemble de particules organiques et/ou inorganiques composées de quelques monomères immergés dans un liquide. L'arrangement de ces macromolécules leur confère des propriétés d'écoulement, diélectriques, optiques et biochimiques particulières issues non seulement de la somme des différentes contributions des deux phases, mais également des effets prédominants des interfaces intrinsèques. L'association de ces matériaux de fonctionnalités particulières (antistatique, antibactérienne, cicatrisants, photochromiques, à changement de phase, piézoélectriques, etc.) à des transducteurs mono-ou multimodaux donne accès à de nouveaux systèmes très sélectifs utiles à l'instrumentation (nouveaux bio capteurs et bioactionneurs, et nano-manipulateurs).

L'équipe BIOMIS s'intéresse ainsi, selon quatre axes de recherche, au développement et à l'ingénierie de microsystèmes en environnement microfluidique et de matériaux fonctionnalisés pour les bio capteurs. Les travaux menés à l'interface de l'électronique et de la micro et nanotechnologie, de la chimie et de la biologie nécessitent une pluridisciplinarité qui justifie la présence dans cette équipe de quelques collègues chimistes et biochimistes. Ces travaux impliquent également une forte interaction et implication avec des structures fédératives pluridisciplinaires telles que l'Institut d'Alembert, le Labex LaSIPS, ou encore la PFMI Cosmétique.
a. Étude de l’interaction cellules / champ électrique sur puces

Mots clés : Nanoporation, électrofusion, diélectrophorèse, électronrotation, tri cellulaire

La miniaturisation des dispositifs permise par l'utilisation des micro et nanotechnologies donne accès à des conditions extrêmes en terme d'amplitude ou de gradients de champ électrique, de confinement fluidique, et la possibilité de concevoir des dispositifs adaptés à l'échelle cellulaire. Ces différents facteurs nous amènent à concevoir des microsystèmes fluidiques utilisant le champ électrique comme vecteur principal pour interagir avec le vivant à l'échelle de la cellule unique. Nous étudions et développons des bio-microsystèmes dans le but de mouvoir, placer, traiter et caractériser les cellules vivantes utilisant :

L'Electroportation et la nanoporation : l'application d'impulsions de champ électrique permet de manipuler la membrane plasmique des cellules. Les processus mis au point d'électro-perméabilisation (ou d'électroporation) permet ainsi de faire rentrer dans les cellules des molécules qui sont en principe incapables de franchir la membrane cellulaire. Par ailleurs, les derniers développements en électronique de puissance (assurant des impulsions de tensions extrêmement courtes (quelques nanosecondes) et très intenses (qq kV)), couplés aux bio-microsystèmes que nous développons permettent d'atteindre des impulsions électriques extrêmes (quelques centaines de kV/cm).

L’équipe BIOMIS est ainsi spécialiste de la conception de micro-dispositifs fluidiques permettant de mettre en œuvre ces sollicitations de champs sur les cellules pour en étudier les effets en temps réel et participer à leur compréhension qui reste à ce jour mal connue. De telles impulsions de champ permettent également d’affecter les membranes intracellulaires.

Electrofusion cellulaire : le champ électrique peut permettre le rapprochement et le contact deux à deux de cellules et leur fusion membranaire (principe de l'électrofusion). L’équipe BIOMIS travaille sur l'utilisation des microtechnologies pour la conception de bio-microsystèmes permettant de mettre en œuvre le processus d'électrofusion en vue de le contrôler à l'échelle cellulaire pour en augmenter le taux de réussite et la qualité en comparaison de systèmes commerciaux actuels. Les micro et nanotechnologies permettent d'envisager une parallélisation massive du procédé.

Impédancémétrie cellulaire sur puce : l'équipe travaille sur la caractérisation de systèmes biologiques (tissus/cellules/systèmes membranaires) en réponse à des stimuli électriques aux travers des paramètres électriques qui les caractérisent. La modélisation du système biologique avec une approche électrique (modèle de Fricke, de Cole-Cole en première approche) permettra d'avoir une meilleure compréhension des phénomènes observés ainsi qu'un suivi suite à une succession de sollicitations : effet des sollicitations électriques sur la viabilité cellulaire, sur la perméabilité de la membrane externe, effets induits sur les composés intracellulaires, dynamique de fusion membranaire.

Tri cellulaire sur puce : le champ électrique agit différemment sur les différents types cellulaires. L’équipe, en collaboration avec le CEA LETI conçoit des puces dédiées au tri ou à la capture cellulaire, jouant également sur les différences de polarisabilité dans un champ électrique alternatif (forces de diélectrophorèse, électronrotation). Dans ce cadre un dispositif destiné à la capture de pathogènes dans le sang a été réalisé.

b. Biomimétisme en milieu microfluidique

Mots clés : biopuce à protéine membranaire, reconstruction osseuse, matrice biomimétique, modification de surfaces

Puces à protéines membranaires, reconstitution de membranes biomimétiques

Une voie encore peu explorée dans le domaine des biopuces de type microarray concerne l'étude structurelle et fonctionnelle des protéines membranaires, en particulier les canaux et les récepteurs. En effet, contrairement aux protéines cytoplasmatiques qui sont solubles, les protéines membranaires ne gardent toutes leurs fonctionnalités qu'insérées dans une double couche lipidique. En dépit de ces difficultés, les récepteurs et les canaux sont déjà les deux cibles les plus importantes en pharmacologie. Les canaux ioniques sont le plus généralement caractérisés électriquement par la méthode du patch clamp sur des cellules vivantes, mais cette méthode devient très lourde lorsqu'il s'agit de tester de nombreux composés, activateurs ou inhibiteurs. Dans ce cadre l'équipe conçoit des dispositifs miniaturisés intégrant des réseaux de bicouches lipidiques (membranes artificielles biomimétiques de la membrane cellulaire), et les utilise pour étudier l'activation et l'inhibition de biomolécules transmembranaires d'intérêt. Les puces à protéines membranaires ont un grand avenir dans le criblage de molécules d'intérêt thérapeutique.
d. **Puces biomimétiques de tissus cellulaires**

La reconstitution sur puces microfluidiques d'environnements biomimétiques des tissus, permet de développer des modèles comportementaux de la prolifération cellulaires. Dans ce cadre, l'équipe BIOMIS développe des microtechnologies spécifiques afin de répondre à cette problématique. Le type de matériau (polymères tels que le PDMS (polydymethylsiloxane), ou les thermoplastiques (COC ou PMMA)) au travers de sa rigidité ainsi que sa structuration spatiale (structuration multi-échelle, de quelques centaines de nanomètres au millimètre), jouent un rôle prépondérant sur la motilité, l'adhésion, la différentiation et la prolifération cellulaire.

Ces travaux trouvent actuellement leur application dans le cadre de la reconstruction osseuse (Projet SIMULOS, LabEx LaSIPS) ou de systèmes biomimétiques du foie.

e. **Microsystèmes pour la biodétection**

Mots clés : Microcapteurs, nanoparticules plasmoniques, systèmes microfluidiques.

f. **Nanoparticules plasmoniques et méthodologie pour la biodétection en milieu microfluidique**

En vue des petits volumes de matière manipulée dans les microsystèmes, la détection sensible de biomarqueurs et autres analytes représente un défi. Récemment, des méthodes optiques, basées sur la résonance plasmonique de nanostructures de métaux nobles (or, argent), sont apparues comme particulièrement sensibles, robustes et adaptées à l'intégration en microsystème. Souvent, les nanostructures sont obtenues par méthodes 'top-down' (lithographie électronique) et sont immobilisées sur le substrat ce qui limite leur interaction avec le milieu biologique.

L'approche suivie par le groupe, notamment dans le cadre du projet COMONSENS (ANR JCJC2010), est de prendre des nanoparticules d'or (de forme et taille variées) obtenues par voie chimique et de fonctionnaliser leur surface par auto-assemblage moléculaire, tout en restant en milieu liquide. La fluidique en microsystème permet ensuite de manipuler ces suspensions avec une grande précision, et de les faire interagir avec des milieux biologiques, voire avec des cellules, des cultures biologiques (cellules, bactéries, algues...). En fonction des interactions moléculaires les nanoparticules s'assemblent en de plus grandes structures, dans lesquelles plusieurs particules interagissent ce qui change de façon drastique leur résonance plasmonique (fréquence optique et intensité).

Le groupe a développé des microsystèmes simples et innovants pour induire, mesurer et quantifier - soit par imagerie multi-spectrale, soit par micro-spectroscopie - ces changements plasmoniques. L'interaction des suspensions des assemblages avec des champs électriques (alternatifs) générés in situ par des microélectrodes offre la possibilité d'augmenter la sélectivité de la détection, par exemple en triant les assemblages de nanoparticules par leur taille. Cette interaction champ électrique-suspension colloïdale est complexe, notamment compte tenu des espèces électro-mobiles (ions, petites molécules polarisables) contenues dans le milieu qui changent localement et de façon dynamique le champ électrique.

La compréhension et la maîtrise des phénomènes électrocinétiques dans ces systèmes conduiront à la combinaison de l'électricité et de la lumière pour une meilleure détection et suivi dans les biomicrosystèmes, et ouvriront également la voie vers l'utilisation des nanoparticules conductrices comme des 'nanoperturbateurs' ou 'nanotransducteurs' du champ électromagnétique, par exemple près des membranes cellulaires.

g. **Détection ampérométrique dans un système microfluidique intégré**

Nous travaillons également sur des micro-dispositifs d'analyse chimique intégrés dans des chambres microfluidiques. En particulier nous avons développé une collaboration avec l'IETR sur l'intégration microfluidique de microcapteurs de pH de type transistors à effet de champ à grille suspendue. L'intégration des canaux microfluidiques réalisés en PDMS sur ces transistors à grille suspendue permet d'effectuer la mesure de pH, soit en statique, soit en flux continu et de travailler sur les conditions optimales de rinçage des capteurs. Ce fonctionnement du capteur dans un
environnement microfluidique, particulièrement fonctionnel, nous a permis de mettre en œuvre de nouvelles méthodologies de mesures basées sur le comportement fréquentiel de ce capteur.

Par ailleurs nous avons développé, en collaboration avec F. Bedioui (Ecole de chimie de Paris) des réseaux microcapteurs pour la détection électrochimique simultanée du monoxyde d'azote et/ou du peroxynitrite. Ces microcapteurs sont destinés à être des plaques (multipuits) de culture cellulaire. Les électrodes en réseau sont chimiquement modifiées selon la nature des analytes cellulaires d'intérêt afin de les doter de la sensibilité, la sélectivité et la biocompatibilité désirées. Elles permettent d'assurer une double détection et chaque électrode est adressable individuellement pour une étude spatiale et temporelle. Des dispositifs intégrant 2 x 110 microélectrodes de 50 micromètres de diamètre et 4 x 617 microélectrodes de 20 micromètres ont ainsi été réalisés. Sur le même principe l'équipe a également développé des réseaux de microélectrodes pour la détection du monoxyde d'azote à partir de la décomposition de nitrosothiols.

h. **Élaboration de matériaux biocompatibles pour la réalisation de biocapteurs**

Mots clés : biocapteurs, matériaux hybrides, sol-gel, immobilisation, encapsulation, fonctionnalisation de surface.

Depuis une trentaine d'années le procédé sol-gel (SG) présente de nombreux avantages pour la création de matériaux innovants en particulier pour la réalisation de matériaux biocompatibles. Depuis 2008 le laboratoire SATIE s'est impliqué dans l'élaboration de matériaux hybrides organique-inorganique à base d'N-alkylacylamides et d'acrylate. La souplesse du mode d'élaboration permet l'encapsulation de molécules biologiques, de préserver leurs propriétés fonctionnelles et de contrôler leurs interactions avec le milieu extérieur. La partie inorganique du matériau permet d'adapter les propriétés mécaniques du matériau synthétisé.

Les efforts de notre équipe se sont concentrés sur l'étude et le développement de biocapteurs micro-rhéologiques utilisant nos matrices comme support sélectif de détection d'entités biologiques. L'encapsulation ou l'immobilisation d'un éventail important d'espèces biologiques (molécules ou micro-organismes) à partir du procédé SG a ouvert la voie à de nouvelles approches de diagnostic (biocapteur), de production (bioréacteurs) et de thérapie (médicaments à libération contrôlée communément appelé "drug delivery" et vaccins). Dans ce contexte, nous avons développé des matrices hydrides biocompatibles capables de capter par diffusion passive des protéines ou des bactéries. En effet, les espèces biologiques insérées sont extrêmement fragiles et sensibles à leur milieu extérieur. Il convient donc d'utiliser des méthodes chimiques « douce » qui respectent au mieux l'intégrité de ces entités biologiques de façon à conserver leurs activités, leurs propriétés, leurs rôles biologiques. Cette thématique a nécessité une approche pluridisciplinaire impliquant plusieurs groupes du laboratoire SATIE : des chimistes pour l'élaboration et l'optimisation des matrices hydrides ; des biochimistes pour le choix des entités biologiques que l'on veut incorporer dans ces matrices ; mais également des instrumentalistes pour l'optimisation de ces matériaux et la mise au point de biocapteurs incluant la détection et l'extraction des paramètres mécaniques et électriques (micro-rhéologique ultrasonore).

A 5.2. Organisation du pôle SIAME

A 5.2.a. Les personnels permanents

La structuration du pôle en groupes équilibrés permet aujourd'hui de capitaliser les savoir-faire transversaux des chercheurs permanents du pôle. Cette croissance est vertueuse, fruit de :

- l'attractivité du laboratoire : une telle croissance est également source de difficultés. Les locaux mis à notre disposition sont de manière chronique sous dimensionnés. Par ailleurs la multiplication des sites implique un effort particulier en termes d'animation scientifique afin de préserver une cohérence et dynamique d'ensemble.

- de la confiance accordée par les tutelles et les partenaires : malgré le contexte de rationalisation général des établissements d'enseignement et de recherche, l'ENS Cachan ou l'UCP continuent à soutenir le pôle par l'affectation supplémentaire de 2 postes de PR, de 2 MCF, d'1 CR et d'un IR récemment recruté. Cet effort considérable reste néanmoins insuffisant au regard du soutien pérenne nécessaire de personnel technique de haut niveau que représente les IR.

- de l'interaction des personnels avec l'environnement académique et socio-économique : un grand nombre de collègues du pôle ont par ailleurs de lourdes charges d'encadrement et de gestion de formation (3 responsables de Master et/ou Licences Professionnelles, 2 directeurs de composantes (IUT et UFR), 2 chefs de département d'IUT ou responsables des études, 1 Vice-Présidente de l'ENS Cachan chargée des moyens, 1 Conseiller scientifique à la DGA, 1 Vice-Président du Conseil Scientifique de l'UCP chargé de la recherche et la valorisation), et le directeur du laboratoire.

A 5.2.b. Les personnels non permanents

Les personnels non permanents du pôle sont essentiellement des doctorants et post-doctorants. Le tableau ci-dessous décline le nombre de thèses par catégories.

<table>
<thead>
<tr>
<th>Source de financement</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>Moyenne Période</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contrats doctoraux</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>8</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>Contrats collaboratifs publics</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Contrats collaboratifs privés</td>
<td>8</td>
<td>7</td>
<td>10</td>
<td>11</td>
<td>9</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>Bourses organismes publics (DGA, CNRS, INRIA, CEA ...)</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Bourses organismes français destinées aux doctorants étrangers</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Total doctorants inscrits</td>
<td>19</td>
<td>18</td>
<td>28</td>
<td>26</td>
<td>31</td>
<td>30</td>
<td>26</td>
</tr>
</tbody>
</table>

Tableau 11 : Nombre de thèses annuelles par catégorie
Compte tenu du nombre de chercheurs habilités à diriger les recherches, ceux-ci encadrent en moyenne 3 thèses par an. Ramené au nombre de chercheurs CTP chaque chercheur toutes catégories confondues a l'opportunité de co-encadrer 1,8 thèses par an.

La durée moyenne des thèses est d'environ 3 ans et 2 mois. Cette durée est confortée par le fait que tous nos doctorants sont financés. Leur source de financement provient soit d'une des trois écoles doctorales dans laquelle sont inscrits nos équipes dans le cadre d'un contrat doctoral, soit de sources en lien avec des contrats collaboratifs publics ou privés, comme le montre le graphique ci-après.

Figure 7 : Sources de financement des thèses

A 5.2.c. Les moyens financiers

A 5.3. Faits marquants du pôle

Le laboratoire SATIE a entamé depuis plusieurs années une démarche pragmatique et évolutive pour favoriser l'émergence de pôles d'expertise à visibilité, régionale, nationale et internationale et le transfert de technologie dans une politique de valorisation globale. Dans ce cadre, une politique raisonnée de dépôts de brevets, de licences de logiciels, de création de start-up, et de participation à la création de plateformes fédératives en vue d'accroître le transfert vers les entreprises, a été favorisée.

A 5.3.a. Création en 2009 de la start-up CyToCap

Suite à un projet ANR CAPCELL (2006; Capture de sous-population de cellules au sein d'un fluide biologique) mené par Mme Phuong-Lan Tran (CR CNRS), une start-up CyToCap a été créée le 18 décembre 2009 et est hébergée au sein de SATIE à l'ENS Cachan, en collaboration avec l'Institut d'Alembert. Le concept scientifique, à l'interface entre biologie, chimie des surfaces, physique d'adhérence et mécanique des fluides, permet l'immunocapture spécifique et sélective de cellules rares dans un fluide complexe sur une lame de microscopie standard en verre. La première application développée est la détection et la caractérisation des cellules tumorales circulantes à partir de prélèvements sanguins de patients atteints de cancer. Les cellules tumorales circulant et étant impliquées dans la cascade de la dissémination métastatique du cancer, le procédé a une visée diagnostic et pronostic.

François Breton, qui a mené des recherches dans ce cadre, a été lauréat "jeune ingénieur" du prix des ingénieurs de l'année 2010, décerné par la revue L'Usine nouvelle et le CNISF (Conseil national des scientifiques et ingénieurs de France).

Ces travaux ont fait l'objet de plusieurs brevets exploités par la société.

A 5.3.b. Logiciel d'interface utilisateur pour programmes scientifiques

Le laboratoire SATIE a développé une méthode de modélisation semi-analytique originale exploitant les méthodes de singularités pour représenter des problèmes d'interaction entre des capteurs et leur environnement. Cette modélisation générique, baptisée DPSM (Distributed Point Sources Method) est exploitée dans le cadre de modèles directs et de problèmes inverses, et développée pour répondre à la modélisation de phénomènes impulsionnels,
électromagnétiques et ultrasonores. De nombreux domaines d'applications sont impactés et font référence à cette technique. Actuellement, les travaux portent sur les systèmes de contrôle de santé intégré aux structures d'une part et sur les capteurs pour l'imagerie et l'estimation de paramètres physiques des milieux biologiques par exemple, d'autre part pour l'imagerie magnéto-optique pour le CND de pièces aéronautiques, capteurs capacitifs pour le contrôle des structures de génie civil, ou la microscopie acoustique...

\[\Rightarrow \text{Cette méthode a donné lieu à plusieurs brevets, deux dépôts de logiciels, un ouvrage publié aux éditions John Wiley, plusieurs thèses et publications, et a conduit à un intéressant partenariat avec l'Université de Tucson, en Arizona.} \]

A 5.3.c. Création du Collège Universitaire Franco-Brésilien Santos Dumont

Destiné à développer et à valoriser les collaborations académiques et de recherche entre la France et le Brésil, le Collège Universitaire Franco-Brésilien Santos Dumont est une structure, créée par l'ENS de Cachan en partenariat avec plusieurs universités brésiliennes en 2011, et inaugurée officiellement en janvier 2012. Il est ouvert à toutes les disciplines scientifiques et à tout type de coopération scientifique en recherche et formation. Ce Collège universitaire a pris forme suite au séjour de H. Abou-Kandil comme professeur invité à l'université de Campinas (UNICAMP), São Paulo, Brésil en 2009 et concrétise une longue tradition de collaboration scientifique entre les laboratoires de l'ENS Cachan, et en premier lieu SATIE, et des équipes de recherche brésiliennes.

\[\Rightarrow \text{Les partenaires du Collège sont : l'École Normale Supérieure de Cachan, Université de São Paulo, l'Université de Campinas UNICAMP, l'Université Fédérale de Rio de Janeiro, l'Université Fédérale de Santa Catarina et l'Université Fédérale ABC.} \]

\[\Rightarrow \text{Le laboratoire SATIE mène plusieurs actions de collaborations avec le Brésil dans le cadre du Collège Santos Dumont (échange d'étudiants, professeurs invités, programmes de recherches, ...) et H. Abou-Kandil est le responsable de ce Collège.} \]

A 5.3.d. Créations de plateformes d'innovation fédératives

Grâce à la dynamique des investissements d'avenir, près de 3 M€ sont investis pour le développement de plateformes communes et de projets transdisciplinaires fédératifs dépassant le cadre du laboratoire SATIE. Dans ce contexte, le site de l’UCP de Neuville-sur-Oise doit accueillir en 2013 quatre plateformes complémentaires dont deux (PATRIMEX, COSMETOMIQUE) qui ont été initiées par le pôle SIAME de SATIE. La proximité et la synergie de ces plateformes avec les différents partenaires impliqués assurent une visibilité significative dans les domaines du patrimoine culturel, de la santé et du bien-être, de la sécurité, de l'environnement. Afin d'ouvrir ces infrastructures aux acteurs du tissu socio-économique local, des locaux mutualisés dédiés aux entreprises et aux laboratoires sont aménagés. Compte tenu du fort potentiel de valorisation attendu, les locaux des plateformes PATRIMEX et COSMETOMIQUE, seront mitoyens.

a. La plateforme PATRIMEX dédiée à la caractérisation des objets patrimoniaux

La plateforme PATRIMEX est un réseau instrumental valorisé d'étude des matériaux anciens et historiques. Elle a pour objectif de développer et exploiter un réseau de plateformes instrumentales, ainsi que des outils et méthodologies communes pour l'étude, la conservation, la restauration et la valorisation auprès des publics du patrimoine culturel matériel. Dotée d'équipements innovants d'étude, de caractérisation, de conservation et de restauration des biens culturels, elle s'appuie sur une communauté scientifique interdisciplinaire étroitement liée au nouveau laboratoire d'excellence PATRIMA (Patrimoines matériels : savoirs, patrimonialisation, transmission, classé A+) et à la Fondation des Sciences du Patrimoine qui en est issue (www.sciences-patrimoine.org). Cette plateforme répond au manque, en France, d'un dispositif associant, sur un périmètre géographique et institutionnel resserré, une large gamme d'instrumentation de caractérisation des objets patrimoniaux, qui soit liée à une base de données commune et à une communauté scientifique interdisciplinaire.

\[\Rightarrow \text{En soutien avec le projet New Aglae (du Louvre) et avec l'expérience du réseau CHARISMA (réseau européen FP7) le développement de cette plateforme constitue un nouveau réseau} \]
instrumental pérenne, à pertinence nationale et internationale, dans le domaine des sciences du patrimoine.

Les outils développés et mis à disposition permettront de tirer de riches enseignements sur la nature et les procédés de création des œuvres, mais aussi le diagnostic de conservation et des opérations de restauration (nettoyage, reconversion, traitement localisé). Avec l’usage des nouveaux matériaux dans la création artistique du XXe siècle (plastiques, vernis…) et les problématiques liées à leur vieillissement, tout un champ de recherche appliquée s’ouvre autour des techniques lasers (couplage Raman, LIBS, acoustique, électromagnétique par exemple).

b. **Un open-Lab dédié aux cosmétiques (PFMI Cosmétomique)**

La Plateforme Mutualisée d’Innovation (PFMI Cosmétomique) est un réseau de plateformes, de laboratoires et d’entreprises spécialisées dans le test, dédié à la mesure de l’efficacité et de l’innocuité des produits cosmétiques innovants. Cette plateforme correspond à une réelle demande des PME et ETI de la filière cosmétique en matière d’outils performants, par ailleurs difficiles à acquérir, et hautement spécifiques mutualisés pour soutenir l’innovation tant sur les ingrédients que sur les produits finis. Ce besoin correspond à la fois au besoin à l’échelle internationale de développement de modèles ou d’outils pour évaluer une allégation nouvelle, et au besoin de mise à disposition d’outils innovants lourds ou uniques (multi-physiques et multi-échelles).

L’objectif de cette plateforme initiée par le pôle SIAME et l’UCP, en collaboration avec le pôle de compétitivité Cosmetic Valley est donc de fédérer et de coordonner l’ensemble des savoir-faire autour d’un centre clairement identifiable et reconnu internationalement proposant des techniques de caractérisation, de détection, de diagnostic, d’imagerie et d’analyse innovatrices basées sur une approche pluridisciplinaire allant de la chimie et la physique à la biologie en passant par l’ingénierie d’application aux sciences de la vie et au bien-être pour les cosmétiques et la sécurité. La PFMI est avant tout une infrastructure permanente de gestion alliant prestations de services, recherche, transmission de la connaissance et propriété intellectuelle autour de différentes activités de R&D. Elle permettra d’une part d’intensifier les collaborations entre les acteurs industriels et la recherche académique ; elle offrira d’autre part les moyens aux PME de développer des nouveaux ingrédients et produits en proposant aux entreprises l’accès aux dernières innovations via des "open lab" dans le respect de la réglementation et de la propriété intellectuelle.

Le premier "open lab" géré par le pôle SIAME sera situé à Neuville-sur-Oise (UCP). Localement, il s’appuiera sur trois plateformes PetLab, PATRIMEX et IMAT qui proposeront aux entreprises un ensemble d’outils et de savoir-faire particulièrement innovant en lien avec les sciences de la vie et le diagnostic rapide. Le laboratoire SATIE chargé par l’UCP, co-animerà cet open-lab avec le pôle Cosmetic Valley, le synchrotron SOLEIL (totalité des lignes) et BIO-EC une société spécialisée dans le test et l’objectivation des produits cosmétiques (contrat cadre en cours de finalisation). Le centre ainsi créé sera équipé de locaux d’accueil spécialisés véritables Living-Lab.

A 5.4. Réalisations du pôle

A 5.4.a. Production scientifique

La liste de la production scientifique par groupe est fournie en annexe 6. Le tableau ci-dessous synthétise l’ensemble de la production du pôle déclinée selon la nomenclature AERES.
Pour mesurer l'activité scientifique sur la période nous avons choisi d'intégrer dans ce tableau la production scientifique des chercheurs de l'UCP ayant intégré SATIE en 2010 sur toute la période. Ceci explique que l'on puisse constater une relative continuité du nombre de publications sur la période. On note néanmoins une légère baisse de l'activité pour les années 2011 et 2012, période pour laquelle un grand nombre de chercheurs du pôle ont participé activement à la réponse aux appels à projet des investissements d'avenir (2 Labex, 1 Equipex, 1 SATT, 1 IEED). Malgré cette période particulièrement chargée, chaque chercheur temps plein a produit en moyenne annuellement 4 documents diffusés dont une grande majorité est destinée à l'international.

Trois lignes supplémentaires permettent de mesurer l'activité intergroupes : prêt de 23% des articles sont intergroupes, ce qui dénote une activité soutenue entre les groupes en phase avec les orientations scientifiques transversales. D'un point de vue complémentaire, ce résultat valide aussi le fait que les groupes ont bien des activités plus fondamentales propres. On note enfin 20% d'articles issus de collaborations avec des chercheurs étrangers confirmant ainsi le rayonnement à l'international des activités du pôle SIAME.

<table>
<thead>
<tr>
<th>Brevets</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>bilan</th>
<th>ratio/CT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brevets français déposés</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>10</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>Demandes d'extensions de brevets</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>27</td>
<td>0,3</td>
<td></td>
</tr>
</tbody>
</table>

Outre les publications, le pôle participe à de nombreuses actions en faveur du transfert de savoir faire vers l'industrie. Les brevets déposés ont volontairement été limités aux innovations stratégiques.

A 5.4.b. Interactions avec l’environnement social, économique et culturel

Le pôle SIAME participe aux efforts de l'ENS Cachan, de l'Université de Cergy-Pontoise et du CNRS pour sensibiliser le grand public aux grands défis scientifiques et initier les jeunes élèves aux sciences. Ainsi, les groupes participent régulièrement aux manifestations organisées par l'ENS de Cachan et de l'UCP : fête de la science, accueil des enfants des écoles de la commune de Cachan, portes ouvertes, …

Les groupes ont une longue tradition de collaboration avec les entreprises. Ainsi, le groupe MOSS a bénéficié de l'apport d'ingénieurs (notamment la société Thales permettant de préparer leur HDR au sein du groupe). Les travaux avec Thales ont mené au dépôt de deux brevets. De même, un ingénieur docteur de RTE (Bogdan Marinescu) a été PAST à l'ENS Cachan et a pu soutenir également son HDR. Par ailleurs, deux thèses CIFRE ont été soutenues et une thèse est en cours. Enfin, une expertise scientifique dans le domaine de la localisation de dipôles magnétiques a été effectuée au profit de la société Valotec.

Le pôle mène dans le même temps une politique de valorisation de la recherche ambitieuse renforçant les synergies internes et externes et mettant en exergue la pertinence de leurs domaines d'expertises au regard du tissu socio-économique local. L'implication du pôle SIAME à des infrastructures fédératives de recherche, de développement et d'innovation doit permettre d'apporter aux entreprises les moyens de passer de la conception au développement en vue d'une mise sur le marché de leurs innovations. Le pôle SIAME en collaboration avec de partenaires institutionnels et des entreprises cherche ainsi à initier, à partir des équipements et savoir-faire ainsi regroupés, un courant d'innovations durables favorisant la compétitivité de nos entreprises locales voire de filières dans leur ensemble.

Différents axes des groupes s'accompagnent d'actions dans le domaine de la diffusion des connaissances (pilotage de la revue I2M, participation à l'organisation de conférences (C2I…), direction de collections…), mais aussi dans la valorisation industrielle. On le retrouve ainsi dans les nombreux contrats de recherche et de prestation (Dassault Aviation, Snecma-Moteurs, EADS, Renault, M2M, Valourec, Snecma, EDF, SNCF, Phycosource, Bio-EC, Givaudan). Plusieurs projets collaboratifs de type FUI ou ANR ont également été obtenus.
- Matériaux Magnétiques pour Machines et Transformateurs », avec pôle de compétitivité ASTECH, Paris Région, piloté par Thalès avec le groupe MME
- Développement d'actifs cosmétiques «Hyaluronic like» fonctionnalisés issus de micro-algues avec les sociétés Bio-EC, Phycosource, Promoalgues, et LVMH
- ANR VTT «FIDEA», piloté par l'INRETS, pour la «Fiabilité et Diagnostic des Composants Electroniques de Puissance pour applications Automobiles »

Les pôles de compétitivité SYSTEM@TIC Paris – Région, ASTECH, Cosmetic Valley sont également des partenaires dans plusieurs projets des groupes. La mise en place de 2 plateformes (PATRIMEX, PFMI cosmétique) dans les prochains mois permettra de valoriser cette recherche auprès du tissu socio-économique local et culturel.

Les indicateurs financiers engendrés sont présentés dans les graphiques ci-après par type de financement et hors salaires. On observe un budget croissant sur la période essentiellement abondé par les ANR (28%) puis par les FUI (17%) puis par les contrats industriels directs (11%). Les financements européens restent faibles, ce qui s'explique d'une part par le manque de moyens logistiques pour les suivre, d'autre part par l'investissement fort du pôle dans les programmes ANR/FUI mais également dans les projets structurants d'investissements d'avenir (EquipEx et LabEX). Ceci est aussi la conséquence des partenariats traditionnels et antérieurs aux projets sur programme avec les industriels.

Le financement par CTP s'élève à environ 44k€/an sur la période. Ces moyens ont permis le financement de thèses et d'équipements onéreux.

Figure 8 : Financements du pôle

A 6. Implication du laboratoire SATIE dans la formation par la recherche

SATIE est composé essentiellement d'EC impliquant de ce fait une très forte contribution à la formation par la recherche. Du fait des différents établissements impliqués, le nombre de master adossés au laboratoire SATIE et la diversité proposée par l'offre de formation en EEA concernée sont particulièrement importants (cf. tableau ci-après). Cette implication génère auprès des EC de SATIE de nombreuses prises de responsabilité en la matière. Elle permet dans le même temps d'accueillir un nombre de stagiaire de niveau Master important (entre 15 et 20 stagiaires par an).

Concernant notre implication du Master IST-EEA (co-habilité par l'ENS Cachan et l'Université Paris Sud 11), nous avons veillé à ce que son offre de formation soit en phase avec le projet scientifique du laboratoire. Pour cela, nous sommes principalement concernés par les 4 spécialités suivantes : physique et ingénierie de l'énergie, automatique et traitement du signal et des images, nanosciences, systèmes avancés de radiocommunications). On peut citer par exemple la création d'une spécialité 'énergie électrique' commune à 2 Masters de l'Université Paris Sud 11 qui dynamise et diversifie nos viviers de recrutement de doctorants dans un domaine en forte croissance et qui constitue le cœur de métier de SATIE.
Nous sommes par ailleurs impliqués dans de nouveaux Master par exemple en Mécatronique (co-habilité par l'ENS Cachan et l'Université de Rennes 1) ou les Cursus Master d'Ingénierie interdisciplinaires (CMI). Nous y animons en particulier les modules micro-mécatronique (centré sur la conception et la fabrication de microsystèmes en phase avec les activités du groupe BIOMIS), et mécatronique et énergie (en phase avec les activités systèmes énergétiques du groupe SETE).

Ces différents axes s'accompagnent d'un certain nombre d'actions dans le domaine de la diffusion des connaissances (pilotage de la revue I2M, participation à l'organisation de conférences (C2I …), direction de collections..), dans une optique visant à favoriser l'enrichissement 'croisé' entre recherche universitaire, formation à la recherche et par la recherche, et valorisation industrielle.

En outre, SATIE met tout en œuvre pour que la relation directeur de thèse-doctorant relève d’un véritable contrat pédagogique passé avec les doctorants. Nous procédons à un accompagnement privilégié de nos doctorants notamment en interaction constante avec les écoles doctorales dont nous relevons. Ils partent tous en conférences (en moyenne 3 fois durant la thèse). Nous veillons à ce que tous nos doctorants bénéficient d'une condition de vie décente propice à leur épanouissement professionnel (aide à la recherche de logement, financement, accompagnement social individualisé si nécessaire …). Nous essayons de plus de créer un esprit de promotion, notamment par la mise en place d'une association de doctorants. 15 doctorants sont en moyenne diplômés par an à SATIE. Compte tenu de l'augmentation constante du nombre de doctorants, nous en avons actuellement 69 en formation. Nous travaillons d'ailleurs en lien étroit avec les écoles doctorales Sciences Pratiques de l'ENS Cachan (François Costa en est le délégué aux thèses pour l’EEA) et Sciences et Ingénierie de l'UPC.

Nous travaillons également en étroite synergie avec le département EEA de l’ENS Cachan. La proximité physique des locaux et la complicité entretenu avec ce département permet d'initier ses étudiants continuellement à la recherche, même si tous ne viennent pas faire leur thèse chez nous. Citons par exemple l'année ARPE (Année de Recherche Pré-doctorale à l'Etranger) dont la mise en place au sein du département EEA s'appuie sur le réseau de relations internationales de SATIE. L'étudiant devra consacrer cette année à l'immersion dans le monde de la recherche avec un vrai projet pédagogique en accord avec le département EEA de l'ENS Cachan.

Pour illustrer la qualité de nos thèses, nous pouvons souligner ici que V. Debusschère a obtenu le prix de la meilleure thèse du GDR SEEDS/club EEA en 2010. On peut noter aussi que P. Larzabal est depuis plusieurs années membre du jury du prix de la meilleure thèse en traitement du signal (prix conjoint club EEA/GDR ISIS/GRETSI). Stéphane Lefebvre a été membre du prix à deux reprises de la meilleure thèse en génie électrique (club EEA/GDR SEEDS) . P. Larzabal est aussi chair du student chapter du TC SAM.

Plusieurs actions de nos chercheurs, et relevant directement de SATIE ont vu le jour dans le domaine de la formation par la recherche. On peut citer par exemple O. Français qui a obtenu un financement Labex LaSIPS pour son projet PRIME via à l'AAP formation. Il concerne le financement d’une Plateforme pour la formation par le Prototypage Rapide à l'Ingénierie des Microsystèmes. Le partenaire associé est le M2 nanosciences de UPSud. De la même manière B. Revol a reçu un support financier et logistique de l’institut Farman pour son action de formation spécifique en direction de doctorants et d’ingénieurs de recherche. Le thème concerne la modélisation et la simulation des structures électroniques de puissance.

Par ailleurs, nos EC participent ou gèrent plusieurs formations au niveau Master déclinés ci-après. Ils interviennent dans le pilotage ou l'animation des formations à la recherche.
<table>
<thead>
<tr>
<th>Nom du Master</th>
<th>Portage</th>
<th>Etablissement</th>
<th>Description</th>
<th>lien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master 2 ETM : Électronique pour les Télécoms et les Microcapteurs</td>
<td>Non</td>
<td>ENS Cachan-UPSud-ENSTA-Supélec</td>
<td>Le Master ETM a pour vocation de former de futurs chercheurs ou ingénieurs ayant des connaissances et des compétences approfondies dans des domaines la microélectronique, les microcapteurs, et les systèmes électroniques analogiques et numériques embarqués (parcours SECI : systèmes électroniques pour les Capteurs Intégrés) ou des télécommunications (parcours CAT : Composants et Antennes pour les Télécommunications).</td>
<td>http://hebergement.u-psud.fr/m2seci/</td>
</tr>
<tr>
<td>Master GEII : Génie Electrique et Informatique Industrielle</td>
<td>Oui</td>
<td>UCP</td>
<td>Le Master GEII est un Master professionnel en apprentissage de l’Université de Cergy-Pontoise (UCP) formant des cadres techniques de haut niveau (bac + 5) destinés à occuper dans le monde industriel des postes d’ingénieurs dans les secteurs de l’électrotechnique, de l’électronique, de l’automatique et de l’informatique industrielle.</td>
<td>http://geii.u-cergy.fr/</td>
</tr>
<tr>
<td>Master 2 PIE : Physique et Ingénierie de l’Energie</td>
<td>Oui</td>
<td>ENS Cachan-UPSud-Supélec</td>
<td>Le Master PIE a pour objectif de donner une formation pluridisciplinaire bivalente dans le domaine de la production d’énergie et des énergies renouvelables, à la fois en physique (nucléaire, plasmas, fusion, neutronique, fission, énergies nouvelles et ioniques) et en ingénierie de l’énergie électrique (production, transport, distribution, stockage, matériaux, systèmes de puissance et réseaux).</td>
<td>http://www.u-psud.fr/fr/les_formations/les_formations_par_diplome/masters/information_systemes_et_technologie/physique_et_ingenierie_de_l_energie.html</td>
</tr>
<tr>
<td>Master 2 SAR : Systèmes Avancés de Radiocommunications</td>
<td>Non</td>
<td>ENS Cachan-UP Sud</td>
<td>Le Master SAR, commun à l’ENS Cachan et à l’université Paris-Sud, propose des enseignements centrés sur les méthodes et outils théoriques nécessaires à la compréhension des importantes avancées conceptuelles dans les domaines de la théorie des communications et de la théorie des réseaux afin de permettre aux étudiants de spéculer sur la meilleure manière dont ces avancées pourraient être appliquées dans les réseaux sans fil coopératifs, mobiles et flexibles de futures générations.</td>
<td>http://www.u-psud.fr/fr/les_formations/les_formations_par_diplome/masters/information_systemes_et_technologie/systemes_avances_de_radiocommunications.html</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----</td>
<td>----------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>CMI Biotechnologies</td>
<td>Non</td>
<td>Réseau FIGURE</td>
<td>Le cursus Master en Ingénierie (CMI) est une nouvelle voie d'accès à des fonctions d'ingénieur experts en innovation. De ce fait l'adossement à des laboratoires de qualité est exigé pour la labellisation. Deux spécialités (Biotechnologies et Systèmes intelligents et communicants) sont créées à l'UCP. Cette formation d'excellence est proposée dans le cadre du partenariat avec les universités du réseau FIGURE (Formation en Ingénierie d'Université de Recherche).</td>
<td>http://www.reseau-figure.fr/</td>
</tr>
<tr>
<td>Master Mécatronique et sciences pour l'Ingénieur</td>
<td>Non</td>
<td>URI-ENS Cachan</td>
<td>L'objectif de la formation est de permettre une approche pluridisciplinaire pour résoudre les problèmes posés par la productique moderne.</td>
<td>http://sfc.univ-rennes1.fr/technologie/master_mecatronique.htm</td>
</tr>
</tbody>
</table>
Bilan du LTN

B 1. Présentation de l'unité

B 1.1. Présentation générale, historique

Le LTN est une équipe de recherche en évolution (ERE) de l'IFSTTAR créée au 01/12/2010 par décision du directeur général de l'INRETS. Pour mémoire, la création de l'IFSTTAR suite à la fusion de l'INRETS et du LCPC a eu lieu au 01/01/2011. L'unité est localisée, pour l'essentiel des effectifs, à Versailles (Satory) et un chercheur est localisé à Belfort, hébergé par l'UTBM.

Cette structure est issue du laboratoire des technologies nouvelles "historique" qui était basé à Arcueil depuis 1985 et structuré en quatre équipes (Energie Electrique et Traction, Diagnostic des systèmes de transports guidés, dynamiques des véhicules et systèmes guidés urbains et régionaux). En 2009, le schéma d'implantation de l'INRETS a provoqué une séparation géographique de ce laboratoire sur deux sites Versailles-Satory et Marne-La-Valée avec une restructuration en deux équipes correspondant à chacun des sites, l'équipe "Energie Electrique" sur le premier et l'équipe "Transports guidés" sur le second. Au 1er décembre 2010, le LTN "historique" a été dissous. L'équipe "Transports guidés", un temps appelée LTN-Marne pour la différencier, a été intégrée dans l'un des laboratoires de l'IFSTTAR du site de Marne-la-Vallée, l'équipe "Energie Electrique" est devenue l'ERE LTN-Satory. La direction du LTN "historique" puis de l'ERE LTN-Satory a été assurée par M. Gérard Coquery jusqu'en décembre 2012.

Sur le site de Versailles-Satory, le laboratoire occupe environ 250 m² de bureaux et 370 m² répartis en 9 salles d'expérimentations.

Le LTN constitue une équipe homogène qui intervient dans le domaine disciplinaire du Génie Electrique. Le champ scientifique est celui de l'Energie électrique pour les transports. La totalité de ses chercheurs est sur la section 63 du CNU, un enseignant-chercheur en délégation est sur la section 28.

L'unité est actuellement insérée dans le département COSYS (Composants et Systèmes) de l'IFSTTAR et a repris le nom LTN depuis janvier 2013. Cette ERE a été créée pour deux ans avec pour mission de préparer un projet d'intégration dans une structure d'accueil durable au sein de laquelle elle pourra pérenniser ses activités (voir le projet).

B 1.2. Missions

Les activités du LTN sont guidées par les problématiques de l'électro-mobilité. Sa mission principale est celle de la recherche dans le domaine de l'application de l'électronique de puissance dans les applications transports. L'unité mène également des missions d'expertises dans le domaine ferroviaire dans le cadre de l'agence de certification Certifer mais également dans le domaine de la fiabilité des composants à travers des contrats industriels. Enfin, les personnels du LTN sont impliqués dans des activités d'enseignement dans les cursus LMD, en particulier au niveau des masters.

B 1.3. Politique scientifique

La politique scientifique du laboratoire est de se maintenir au plus haut niveau dans son approche sur les champs et objets qu'elle étudie. L'ambition du LTN est donc de rester en amont et parmi les leaders sur le plan national et international d'une activité qu'il a réussi à mettre en place et à valoriser depuis déjà plusieurs années dans le domaine de l'étude du vieillissement de dispositifs électroniques de puissance jugés stratégiques pour les transports. Il s'agit :

- des modules de puissance à semi-conducteurs, dont des évolutions technologiques majeures sont encore attendues avec des dispositifs grands gaps à base de SiC ou de GaN, pour les futurs convertisseurs d'énergie ;
- des systèmes de stockage d'énergie électrique à super-condensateurs pour les futurs véhicules routiers, mais également guidés ;
- de système de génération (ou de conversion) d'énergie à pile à combustible (PAC) qui pourrait permettre une voie alternative au stockage d'énergie électrique embarqué.
Les objectifs scientifiques sont donc focalisés sur la compréhension des comportements, vis-à-vis des contraintes d'usage, de ces nouveaux composants et nouvelles technologies pour la propulsion des futurs systèmes de transports terrestres et pour la commande d'actionneurs dans le domaine aérien (avion plus électrique). Les profils de contraintes que subissent les dispositifs étudiés les emmènent à des vieillissements et des dégradations pour lesquels à la fois les mécanismes et leurs effets sont étudiés. Il s'agit bien entendu de contraintes de natures électriques, mais également thermiques et mécaniques avec les différents couplages qui en découlent.

Pour répondre à ces questions, la stratégie adoptée est d'une part méthodologique et d'autre part organisationnelle. Sur le plan de la méthodologie, celle-ci repose de manière assez large sur une forte composante expérimentale avec des essais de vieillissements et des caractérisations électriques et thermiques. De nombreuses modélisations de natures multiples et simulations numériques sont également mises en œuvre afin de reproduire les expérimentations et de compléter la connaissance sur les stress apportés aux dispositifs. Enfin, des analyses et observations sont effectuées afin de comprendre les mécanismes de dégradations à travers un volet physique de la défaillance.

Sur le plan de l'organisation, le laboratoire est formé d'une seule équipe structurée autour de quatre thématiques, trois thèmes verticaux qui concernent les composants cités plus haut et un thème transverse d'intégration système :

B 1.3.a. La fiabilité des composants actifs de puissance haute température et haute tension (resp. Z. Khatir)

Ces travaux concernent les systèmes convertisseurs intégrés de puissance à semi-conducteurs. Ces dispositifs, déjà existants dans le domaine ferroviaire pour la traction, doivent être intégrés dans les systèmes routiers pour le développement des véhicules électriques et hybrides, mais également aéronautiques pour la commande d'actionneurs (avion "plus électrique"). Les enjeux sociétaux sont la réduction de la consommation d'énergie fossile et l'amélioration de l'efficacité énergétique. Cependant, l'électrification des systèmes de transports requiert en particulier une forte compacité et une forte intégration des systèmes de conversion électriques. Conséquemment, les convertisseurs électromécaniques de puissance tendent vers une forte intégration à la fois des fonctions de puissance (densités de puissance élevées), mais aussi des fonctions de commande, de protection et d'un certain nombre de fonctions "intelligentes". La conséquence est qu'ils sont soumis à des conditions environnementales sévères en termes de niveaux de température mais également en termes de variations de température. Les premiers réduisent la fiabilité et les seconds sont un facteur aggravant de dégradation. La fiabilité de ces dispositifs est l'un des verrous à l'électrification de fonctions embarquées en remplacement à des technologies moins performantes énergétiquement.

Les travaux visent à la compréhension des mécanismes de dégradation et de vieillissement de ces dispositifs. Des tests de vieillissements, à l'aide d'outils originaux, couplés à des modélisations numériques des comportements électrothermiques et thermomécaniques de ces dispositifs, dans leurs conditions d'usage, permettent de mettre en évidence les mécanismes de défaillances et d'évaluer les technologies.

Les objectifs sont d'étudier la dégradation des performances, les limites physiques et les mécanismes de défaillance propres aux applications transports. L'un des objectifs majeurs est la compréhension des liens entre les mécanismes de dégradations et les modes de défaillances observés, mais également d'apporter des éléments de réponses quant aux lois de vieillissement et en particulier, éclairer le rôle des paramètres technologiques et des propriétés des matériaux utilisés. Pour répondre à ces objectifs, nous avons entrepris un certain nombre de travaux à la fois expérimentaux et théoriques depuis quelques années afin d'appréhender les mécanismes physiques de dégradation et de vieillissement des composants. La démarche engagée est celle d'une approche physique de la fiabilité.

Les essais consistent à faire subir à des véhicules de tests les contraintes thermiques cycliques que subissent les composants en situation. L'objectif étant d'une part de révéler les modes de défaillances représentatifs du vieillissement en usage et d'autre part d'analyser les dégradations structurelles. On cherche également à détecter et mettre en lumière des paramètres (électriques et/ou thermiques) qui puissent jouer le rôle d'indicateur du vieillissement (ie. de dégradations). Les bons paramètres, qui ne sont pas toujours triviaux à déterminer, permettent de détecter la première faiblesse et de suivre la
progression de la dégradation. Deux types de cycles thermiques sont mis en œuvre: les cycles passifs, dus à l'environnement, et actifs, dus à l'auto-échauffement des puces.

Les premiers peuvent être de très fortes amplitudes (parfois jusqu'à 250°C) mais de très faibles fréquences (plusieurs heures), les seconds sont de plus faibles amplitudes (quelques dizaines de degrés Celsius) mais beaucoup plus fréquents (quelques secondes). Les premiers sont reproduits à l'aide d'enceintes climatiques, les seconds utilisent des bancs de cyclage de puissance développés au laboratoire. Par ailleurs, des modélisations thermiques et thermomécaniques sont menées afin d'évaluer les contraintes que subissent les composants dans les applications. La combinaison test de vieillissement/analyse des défaillances et des dégradations et l'estimation des contraintes thermomécaniques et électrothermiques subies par les composants permettent d'éclairer et éventuellement de modéliser les mécanismes de dégradation.

Quelques exemples d'actions sur la période 2011-2013:

Des investigations sur les mécanismes de dégradations au niveau des puces IGBT et MOSFETs, utilisées dans les conditions d'usage automobile, ont été menées dans le cadre de la thèse de J. Moussodji (projet ANR FIDEA). Nous avons, en particulier, étudié les comportements critiques électro-thermiques des composants et proposé de vérifier des hypothèses sur les phénomènes physiques mis en jeu afin de comprendre certaines défaillances observées mais non encore expliquées. Par ailleurs, la faisabilité de caractérisations sous polarisation directe de puces IGBT sectionnées a été démontrée pour la première fois

(à notre connaissance) [ACL-6]. Après corrections des effets dus à la coupe, cela devrait permettre d'ouvrir le champ à la caractérisation de cartographies de contraintes et de température, voire de courants sur les tranches des composants sous polarisation.

Des d'outils et méthodes non intrusives de caractérisations électrothermiques d'assemblages innovants de reports de puces ont été développées (thèse de B. Thollin, ANR blanc ECLIPSE). Les reports, à l'aide de technologies "micro-poteaux" ou "nano-fils" de cuivre électro-déposés, ont été réalisés par les partenaires universitaires (AMPERE, LAPLACE). Dans ce cadre, il a été mis au point un nouveau moyen de caractérisation électrothermique avec des performances dynamiques de l'ordre de quelques dizaines de microsecondes afin d'obtenir de manière précise la réponse des premières interfaces (joints d'interconnexion électro-thermo-mécanique) situées au plus proches de la partie active.

Des essais de vieillissement à haute température (référence à 200°C), ont été réalisés afin de révéler les mécanismes de dégradations spécifiques à ces niveaux de températures (projet SiC-HT2). Les technologies visées étaient celles à base de semi-conducteurs an carbure de silicium (SiC) pour des applications aéronautiques pour la haute température et ferroviaire pour la haute tension. Un banc de test de cyclage actif à haute température original a été développé et mis en œuvre afin de comparer des technologies de couples fils de connexion/métallisation de puce, des substrats isolants ou encore des technologies de report de puce adaptées pour ces niveaux de températures et/ou de tensions. Les difficultés tenaient non seulement aux bancs spécifiques pour les niveaux de températures mais également aux équipements et instrumentation spécifiques nécessaires. Un autre point de difficulté a été la forte...
sensibilité des dispositifs SiC, due à leur surface active réduite et leur forte densité de puissance.

B 1.3.b. Le stockage de l’énergie électrique pour les systèmes de transports (resp. G. Coquery)

Les composants de stockage de l’énergie électrique restent le point bloquant au développement du véhicule électrique. Les travaux concernent ici l’étude du “vieillissement” des super-condensateurs qui, comme les autres composants de traction, subiront les contraintes transports. Les super-condensateurs stockent l’énergie électrique majoritairement sous forme de charges électriques (réservoirs de puissance) de manière complémentaire aux batteries électrochimiques (réservoirs d’énergie). C’est la raison pour laquelle ils sont candidats potentiels intéressant pour ces applications. Les travaux réalisés ont permis de définir une méthodologie de caractérisation expérimentale originale et un moyen d’essai original a été conçu, réalisé et breveté par le LTN. Des essais accélérés de vieillissement au cyclage et/ou calendrier selon les contraintes réelles d’exploitation ont permis d’établir des lois de vieillissement représentatives d’un usage sur un véhicule et de constituer une base de données sur les super-condensateurs. L’influence des paramètres d’usage (température, tension, courant, …) a été mise en évidence et a permis de révéler les modes de défaillances afin de maîtriser la fiabilité et la sécurité de ce type de système de stockage d’énergie.

Des travaux sur des super-condensateurs de très fortes capacités unitaires (9000F) effectués au laboratoire ont permis au fabricant (Batscap) d’optimiser les modules réalisés en termes de résistance électrique série et résistance thermique pour des applications ferroviaires.

Ces travaux, réalisés dans le cadre du projet ANR Superstore, ont permis d’investiguer la robustesse de ces dispositifs et leurs modes de défaillance. Il a notamment été recherché les comportements sur cellules et modules de supercondensateurs vis-à-vis de :

- cycles de puissance basés sur les missions tramway,
- courts-circuits (cas des défaillances accidentelles internes au composant) grâce à la réalisation d’un banc d’essai original pouvant supporter de très forts courants de court-circuit (jusqu’à 40 kA).

Etant donné l’effet très important du vieillissement calendaire sur le comportement des super-condensateurs, des actions de recherche et de modélisation de ce type de vieillissement ont été menés. Ces travaux ont été adossés à des essais multiples suivant des pans d'expériences prenant en compte le calendrier simple, et des combinaisons de calendrier avec soit des ondulations de courant, soit du cyclage thermique passif (d'environnement), soit enfin du cyclage de puissance. Ces travaux ont été menés dans le cadre du projet ANR Supercal.

Outre la compréhension de ces effets, ces essais devraient permettre de déduire des facteurs d’accélération dus au vieillissement calendaire pour l'usage automobile.

B 1.3.c. L’intégration et l’interface systèmes des générateurs à pile à combustible (PAC) (resp. D. Candusso)

Le potentiel de recherche dans ce domaine se répartit sur 2 sites : Satory, et Belfort où deux personnels IFSTTAR (1CR du LTN et et 1 IE du LTE) sont localisés à temps plein. A Belfort, les travaux sont menés au sein de la plateforme nationale de recherche sur les systèmes à pile à combustible qui abrite le CNRT INEVA, la Fédération de Recherche CNRS FCLAB (partenaires de la FR 3539 : UFC, UTBM, CNRS, ENSMME, IFSTTAR), l’Institut FCellSYS (CEA, UTBM). L’objectif de l’IFSTTAR est d’évaluer le potentiel de la technologie PAC pour les systèmes de
transports. La démarche scientifique adoptée mêle l'expérimentation, l'analyse des phénomènes, la modélisation de l'expérience et la modélisation physique. L'implication de l'IFSTTAR à Belfort a pour objectif de contribuer aux thématiques majeures identifiées sur les systèmes PAC de puissance : la durée de vie et la dégradation des performances énergétiques avec des aspects fiabilité et diagnostic, les auxiliaires et la gestion de l'énergie. L'IFSTTAR bénéficie avec la plateforme de Belfort d'un cadre de recherche très multidisciplinaire et d’un instrument public d'importance, qui offre des moyens techniques satisfaisant aux essais de PAC fortes puissances et possédant peu d'équivalents en Europe. Les personnels IFSTTAR localisés à Belfort sont très impliqués dans l’approche expérimentale de l’évaluation de la durée de vie et des modes de défaillance sous les contraintes réelles des applications embarquées. Sur le site de Satory, les activités portent plus spécifiquement sur l’interface "PAC – convertisseur électronique" avec notamment des actions de recherche sur la problématique de la montée en puissance des générateurs PAC (modularité et concept de segmentation des stacks PAC) avec la prise en compte de fonctionnements en modes dégradés et la tolérance aux pannes. Des architectures de convertisseurs statiques spécifiques et modulaires autorisant cette montée en puissance avec fiabilité renforcée font l’objet d’études et de recherches.

Quelques exemples d'actions sur la période 2011-2013:

Des travaux sont menés sur la caractérisation des générateurs PAC. L’une des spécificités des travaux réalisés réside dans les niveaux de puissance des piles investiguées (de 100W à quelques 10 kW). Nous sommes amenés à nous approprier progressivement des techniques et des instruments de mesure électrochimiques (courbes de polarisation, spectrométrie d’impédance électro- chimique, voltamétries cyclique et linéaire…) initialement utilisés par la communauté des électro-chimistes (souvent sur des monocellules, voire des composants / matériaux de PAC), et à les adapter à des empilements de PAC aux puissances plus en rapport avec les applications transport. Les essais passent par la définition et à la réalisation de protocoles et plans expérimentaux permettant des caractérisations plus efficaces et des optimisations à la fois en termes énergétique et de fiabilité / durée de vie. Pour affiner les analyses des essais, des méthodes permettant le traitement des informations expérimentales collectées sont proposées.

Des modèles comportementaux (thèse de R. Onanena) et phénoménologiques de systèmes PAC sont aussi développés (thèse de N. Noguer). Ces travaux sont menés pour mieux comprendre, mieux représenter les mécanismes complexes de dégradation des PAC et en vue de pouvoir établir un diagnostic de l’état de santé des PAC étudiées (projet ANR DIAPASON2) : grâce à des approches de diagnostic basées sur des techniques de traitement du signal et de reconnaissance de forme (classification des états de fonctionnement, des défauts).

Une autre partie des travaux vise l’expérimentation des systèmes PAC en vue de leur intégration dans l’environnement transport (ex : projets MOBYPOST et F-City H2). Les travaux donnent d’abord lieu à des caractérisations de systèmes PAC placés dans des conditions d’usage spécifiques aux applications véhicules (duplication en laboratoire des conditions d’usage liées aux cahiers des charges transport : sollicitations par des cycles dynamiques de courant déduits de profils de mission véhicule, par des ambiances climatiques et/ou vibratoires particulières…), avec pour finalité l’optimisation des performances des générateurs sous les contraintes transports et des travaux à mener sur l’intégration de la PAC au sein de la chaîne de traction électrique du véhicule (recherche de solutions innovantes pour la conception des systèmes PAC : réflexions menées sur les architectures fluidiques, les topologies électriques et l’hybridation, la sûreté de fonctionnement).

D’autres activités ont pour objet l’interface électrique PAC - convertisseur électronique et la maîtrise des contraintes de mission transport (avec notamment la prise en compte des aspects fonctionnement en modes dégradés et tolérance aux pannes du système PAC via une redondance accordée par les concepts de
générateurs multistack et de piles segmentées) ; ces travaux sont aujourd’hui menés à la fois à Belfort et à Satory en lien avec le LGEP, dans le cadre de la collaboration SPEE LABS (thèse d’E. Frappé).

B 1.3.d. Les applications et aspects systèmes (resp. G. Coquery)

L’objectif est d’apporter un complément à l’étude des composants issu de la vision globale du système. Il s’agit de la mise en œuvre de modèles et méthodologies appropriés à la simulation des systèmes et prise en compte de l’environnement (par exemple les profils de mission des véhicules, le trafic des véhicules guidés ...). Cette approche permet de proposer des solutions d’optimisation de l’efficacité énergétique et la durée de vie des composants en tenant compte du dimensionnement du système, de la gestion de l’énergie à bord, du mode de freinage ...

Parmi les actions entreprises au niveau système, nous pouvons citer le projet Plathée (PLAteforme pour Trains Hybrides Economiques et Respectueux de l’Environnement) qui a permis d’étudier l’hybridation de sources d’énergie pour la traction électrique ferroviaire. Une locomotive a été transformée en plateforme hybride d’investigation ouverte à plusieurs technologies de stockage. Nous avons ainsi pu mettre en œuvre et évaluer des composants de production et de stockage de l’énergie issus des nouvelles technologies (groupe électrogène, PAC, batteries, super-condensateurs). Ce projet a reçu le 1er prix à la conférence internationale WCRR 2011 dans la catégorie : « a more and more energy efficient railway ».

La solution embarquée de stockage par super-condensateur sur une ligne de tramway a été étudiée dans le cadre du projet STEEM (PREDIT) permettant de circuler sans caténaire pour une meilleure intégration urbaine et une moindre consommation d’énergie.

Des caractérisations électriques des modules de super-condensateurs ont été réalisées pendant les phases de freinage et de recharge lors de l’arrêt de la rame en station.

Lors de la circulation du tramway en condition d’exploitation, nous avons pu valider le système de stockage d’énergie embarqué et démontrer que les super-condensateurs permettaient d’avoir un réservoir d’énergie suffisant pour suppléer à l’absence de caténaire entre deux stations. Ce projet a reçu le prix du PREDIT 2011.
B 2. Positionnement régional, national et international

B 2.1.a. au niveau régional

Le laboratoire est associé depuis 2005 aux trois autres laboratoires de Génie Electrique du sud parisien (LGEP, le SATIE et le département énergie de Supelec) dans un pôle de recherche appelé SPEELabs. Dans ce cadre, des projets ainsi que des thèses sont menées en collaboration. Une structuration plus large est prévue pour les années à venir avec le projet de création d'une fédération de recherche élargie à la communauté "Electrical Engineering" sur le plateau de Saclay.

Par ailleurs, le LTN est fortement impliqué dans les instances du pôle de compétitivité Moveo et en particulier dans les DAS (domaines d'actions stratégiques) Système de Stockage d'Energie (SSE) et Systèmes Mécatroniques pour l'Electrification du Véhicule (SME). Nous sommes également impliqués dans les programmes et activités de l'IEED VEDECOM pour lequel nous avons participé à l'élaboration du programme ayant trait à l'électrification des véhicules.

B 2.1.b. au niveau national

Le LTN a été très impliqué depuis de nombreuses années dans les différents GDR successifs du CNRS concernant l'électronique de puissance. Aujourd'hui, nous participons aux travaux du GDR SEEDS dans essentiellement deux des pôles qui le concernent : le pole ISP3D (sur l'intégration de puissance et la fiabilité) et le pole transport. Nous participons également au GDR PACS sur la pile à combustible et les systèmes associés.

Dans la communauté nationale, le positionnement du laboratoire est lié aux spécificités thématiques pour lesquelles il a su obtenir une certaine reconnaissance sur les travaux de recherche concernant la fiabilité technologique des composants de puissance, l'étude de la durée de vie des modules à semi-conducteurs et super-condensateurs et son savoir-faire en matière de tests de vieillissement en puissance. Cela lui a permis par exemple de fédérer et partager des activités sur ces thématiques avec différents laboratoires: le SATIE de l’ENS-Cachan, le LAAS, LAPLACE (Toulouse), l’IES (Montpellier), AMPERE (Lyon), l’IMS (Bordeaux), le G2Elab (Grenoble), le CEMES (Toulouse), l'Institut P' de l'ENSMA-Poitiers. Ces activités de recherche en partenariat ont été soutenues à travers divers projets ANR et FUI.

B 2.1.c. au niveau international

Le laboratoire participe depuis de nombreuses années à des projets européens collaboratifs. Cela a été le cas dans le cadre du FP5 avec le projet RAPSDRA (Reliability of Advanced High Power Semiconductor Devices for Railway Traction Applications), du FP6 avec le projet HOPE (High Density Power Electronics for FC and ICE-Hybrid Electric Vehicle Powertrains), et FP7 avec le projet FABRIC (FeAsiBility analysis and development of on-Road charging solutions for future electric vehicles). Les deux premiers étant des projets dans la thématique de la fiabilité technologique des modules semi-conducteurs de puissance et le troisième sur des aspects plus système de recharge de véhicules électriques.

Depuis mars 2013, le LTN est reconnu comme centre de compétence du réseau européen ECPE (European Center for Power Electronics). Cela devrait lui permettre d'ouvrir de manière plus large les collaborations à l'échelle européenne et internationale et d'augmenter les opportunités de projets à cette échelle.

B 3. Profil d’activités

La grande partie des activités du laboratoire correspond à de la recherche finalisée en forte interaction avec l'environnement économique. Cette interaction est observable à travers les nombreux contrats de recherche partenariale. Elle est également visible par les contrats directs avec les industriels et les expertises menés au sein du LTN. Ainsi la part de recherche académique et de l'interaction avec le monde économique prennent une part importante et équivalente dans les activités du laboratoire. Ensuite vient une activité de formation par la recherche au niveau Master et doctorat qui est, malgré tout, assez soutenue à travers les implications en termes de formations dans les cursus de Master recherche et d'encadrement de nombreux doctorants.
B 4. Organisation et vie de l'unité

B 4.1. Évolution des effectifs

B 4.1.a. Personnels permanents

Les effectifs des personnels permanents ont été assez stables. Le tableau 1 donne l'évolution des effectifs sur la période d'évaluation, pour simplifier celle-ci a été démarrée en janvier 2011 et seuls les six premiers mois de 2013 ont été pris en compte. A titre indicatif, nous donnons également les chiffres de 2010 (hors période d'évaluation). On peut y observer que depuis la création de l'unité, aucun recrutement ou départ de chercheur n'a été effectué, l'unité comptabilise un total annuel quasi-constant de 8 chercheurs temps plein (CTP/an). Les enseignants-chercheurs étant en délégation avec une charge d'enseignement minimale, ceux-ci sont comptabilisés en temps plein recherche. Un enseignant-chercheur a effectué une délégation d'un an (septembre 2010 à Août 2011) et un autre a été recruté en octobre 2010 en chaire d'excellence à l'UVSQ (université de Versailles-saint Quentin) et en délégation pour 5 ans au LTN.

Concernant le personnel ITA, un ingénieur de recherche (IR) et un technicien (T) ont été recrutés en 2011, et un assistant-ingénieur (AI) l'a été en 2012. Malgré le bon équilibre apparent entre chercheurs et ITA, la réalité est que seuls 4 ITA (1 IR, 1 IE, 1 Al et 1 T) sont des personnels supports à la recherche pour les salles d'expérimentations. De plus, parmi ceux-ci, le technicien doit quitter le labo au mois de mai.

<table>
<thead>
<tr>
<th>Année</th>
<th>DR</th>
<th>CR</th>
<th>EC</th>
<th>Total Chercheurs</th>
<th>Global période</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010 (hors période)</td>
<td>2</td>
<td>5</td>
<td>0.5</td>
<td>7.5</td>
<td>5</td>
</tr>
<tr>
<td>2011</td>
<td>2</td>
<td>5</td>
<td>1.5</td>
<td>8.5</td>
<td>12.5</td>
</tr>
<tr>
<td>2012</td>
<td>2</td>
<td>5</td>
<td>1.5</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>2013 (janv-juin)</td>
<td>1</td>
<td>0.5</td>
<td>2</td>
<td>4</td>
<td>20.5</td>
</tr>
</tbody>
</table>

Tableau 1: Effectifs permanents (en personnes/an)

Hormis un chercheur localisé à Belfort, le reste des permanents figurants dans ce tableau se trouve localisé à Versailles-Satory. Dans un contexte national de restriction budgétaire, l'augmentation de ces moyens nous contraindra nécessairement à passer des délégations universitaires et par des CDD sur contrats.

B 4.1.b. Personnels non permanents

Ces personnels sont constitués des doctorants et des CDD contractuels. Comme il sera expliqué plus loin, la plupart des doctorants sont financés par des contrats de recherche (ANR, FUI,…) et bénéficient d'un contrat doctoral pour la quasi-majorité d'entre eux. Ils sont donc traités ici comme tels et non pas comme des CDD contractuels.

Le tableau 2 fournit l'évolution du nombre de doctorants et des thèses soutenues sur la période d'évaluation. Le ratio figurant dans la dernière colonne indique que chaque chercheur encadre près de 2 doctorants par an en moyenne. Environ la moitié des doctorants sont inscrits à l'école doctorale de référence pour le laboratoire (l'EDSP de l'ENS-Cachan). Sur la période, le nombre de thèses soutenues correspond en moyenne à 30% des thèses en cours qui correspond environ à 2 thèses soutenues par an et par HDR (2 HDR dans l'unité sur la période). Ces chiffres traduisent une bonne dynamique et une forte attractivité du laboratoire des doctorants sur ses thèmes de recherche. Ils montrent par ailleurs que les chercheurs du laboratoire s'acquittent correctement de leur mission de formation par la recherche. Il est à remarquer le fort taux de thèses co-dirigées avec des laboratoires extérieurs, environ 50%, qui montre le niveau élevé du partenariat académique du LTN. Par ailleurs, aucune thèse n'a été abandonnée durant la période. Enfin et à titre indicatif, la durée moyenne des thèses est de 43 mois, soit 3 ans et 7 mois.

Les sources de financement des thèses sont présentées dans le tableau 3. La moitié des doctorants sont financés par des contrats de recherche sur projets. Ensuite viennent des thèses CIFRE et en cofinancement entre l'IFSTTAR et les régions (Ile-de-France, Franche-Comté,…). Enfin et à titre indicatif, hormis les doctorants CIFRE et un salarié permanent IFSTTAR, les doctorants sont quasiment tous sous contrats doctoraux.
Tableau 2: Effectifs doctorants et thèses soutenues par année

<table>
<thead>
<tr>
<th>Thèses en cours</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>Bilan période</th>
<th>Ratio/CTP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thèses soutenues</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>11</td>
<td>0.6</td>
</tr>
<tr>
<td>dont thèses EDSP</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0.2</td>
</tr>
<tr>
<td>Tab. 2: Mode de financement des thèses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

En ce qui concerne les CDD sur contrats (autres que les doctorants), nous comptons :

- un post-doc recruté en tant que chargé de recherche contractuel de 2009 jusqu'en 2011, puis recruté au laboratoire suite à un concours externe d'IR2 dont il a été le lauréat.
- un ingénieur de recherche (IR) contractuel recruté pour 18 mois.
- un Ingénieur d'étude (IE) contractuel a été recruté sur un poste de CDD FGRC de longue durée et a effectué deux périodes contractuelles de trois ans chacune, soit six ans au total jusqu'en mai 2013.
- deux assistants ingénieurs contractuels en 2011 sur 12 mois chacun. L'un d'eux a été recruté au LTN à la suite d'un concours externe réussi.

Évolution des moyens

L'activité du LTN-Satory a une forte composante expérimentale avec des moyens de tests novateurs et originaux qui sont des atouts pour l'équipe. Ils sont un des éléments de notre positionnement en tant que leader dans le domaine des tests de vieillissement et de la fiabilité technologique des composants de puissance. Les moyens matériels sont accueillis sur une surface de laboratoire d'environ 400 m² divisée en plusieurs locaux :

- salle d'analyse (scanner acoustique, MEB, microscopes optiques, vidéo microscope, hotte aspirante, matériel de micro-section, polisseuse, profilomètre optique);
- salle de tests environnementaux (enceintes climatiques, …)
- salle de tests actifs (multiples bancs de test en cyclogies actifs, thermorégulateurs,…)
- salle d'électronique (plusieurs établis d'assemblage et montage électronique, matériels et équipement dédiés)
- salles de caractérisation électrique et thermique (Banc d'essais composants 4000V-6000A - 40°C+125°C, Bancs d'essai de composants 20A-6500V à 250°C, Banc d'essai de mise en série 15kV-4kA 20°C+100°C, alimentation HT-10kV, alimentations/charges réversibles sur le secteur, 2 x {600V/66A DC}, bancs de caractérisations thermiques, Caméra IR,…)
- salle super-condensateurs (bancs de cyclage, ensemble spectromètre d'impédance)
- atelier mécanique (pour travaux de réalisations de petites mécaniques, tour, fraisage,…)

Partie B : Bilan du LTN
salle d'essais traction/freinage (hacheur, pupitre, roues acier,…)

Outre les équipements propres du laboratoire, nous accueillons dans nos locaux des équipements mutualisés avec l'université de Versailles-Saint Quentin (UVSQ). Il s'agit d'un tomographe X-3D et d'un MEB (Microscope Electronique à Balayage) à grande chambre.

Par ailleurs, par son implication dans la plateforme nationale de Belfort (FC LAB) dédiée aux recherches sur les générateurs à pile à combustible (PAC), le LTN bénéfice d’un instrument public d’importance et de moyens techniques pour les essais de PAC fortes puissances : salles traitées hydrogène, bancs de caractérisation 1 kW – 50 kW, ensemble vibro-climatique. Le bâtiment de la plateforme belfortaine est en cours d’extension (doublement de la capacité d’accueil et de test, livraison prévue fin 2013).

B 4.3. Organisation administrative de l’unité

L’unité est dotée d'un secrétariat (N. Rajaravishankar) pour les tâches administratives classiques et pour servir de relai avec les différents services de l'Ifsttar, dont le SRH et le département Cosys. Pour la gestion des moyens financiers, le laboratoire a accès au pôle de gestion mutualisé de l'IFSTTAR sur le site de Versailles dans lequel une gestionnaire (S. Oumar) est dédiée aux affaires du LTN. En son absence, le LTN peut se retourner vers un autre gestionnaire du pôle.

Concernant l'hygiène et la sécurité, le laboratoire est pourvu d'un agent de sécurité et de prévention (J.P. Ousten), de sauveteurs secouristes du travail (L. Dupont et T. Kociniewski) et de serre-file en cas d'alerte incendie (R. Lallemand et J.P. Ousten). Très récemment, le laboratoire s'est lancé dans une démarche qualité et a affecté un personnel (A. Ibrahim) à cette fin. Enfin, la secrétaire de l'unité a des fonctions secondaires de correspondants informatique, communication, archive et site web pour le compte de l'unité vis-à-vis des services centraux correspondants de l'Ifsttar. Cette organisation est visible dans l'organigramme fonctionnel présenté en annexe 4.

B 4.4. Organisation scientifique de l’unité

Le laboratoire est organisé en une seule équipe de recherche structurée autour de quatre thématiques, trois thèmes verticaux qui concernent les composants et un thème transverse d'intégration système (voir plus haut).

B 4.5. Vie de l’unité

La vie de l'unité est régie par les éléments de pilotage et d'animation que sont le conseil de laboratoire, les séminaires scientifiques, les revues de direction, et les réunions qualité/sécurité et de projets.

B 4.5.a. Conseil de laboratoire

Le conseil de laboratoire se réunit mensuellement. Etant donné l'effectif de l'unité, tous les personnels, qu'ils soient permanents, contractuels, doctorants, post-doctorants ou stagiaires y sont invités. Le conseil de laboratoire a un double rôle de diffusion et d'échange d'informations aux membres de l'unité provenant des différentes instances (Codir, Collège des structures de recherche, Conseil de département,…), et consultatif par le directeur du laboratoire, entre autre, sur l'organisation et la vie du laboratoire, la programmation annuelle de l'unité et son suivi, la gestion des équipements du laboratoire, les priorités et choix des sujets de thèses…

B 4.5.b. Animation scientifique

L'animation se fait au travers de deux types de séminaires alternants:

• des séminaires doctorants: régulièrement organisés (4 fois/an) afin de faire un point sur les travaux de thèses en cours et d'assurer leur qualité scientifique et leur bon déroulement.

• des séminaires thématiques: organisés (4 fois/an) afin de présenter les travaux de recherche des équipes. Outre les échanges qu'ils permettent sur les questions scientifiques, ces séminaires sont là pour favoriser la coopération entre les équipes et traiter des orientations stratégiques du laboratoire.

B 4.5.c. Réunions de projets

Ces réunions se déroulent une fois par mois et permettent de faire le point régulièrement sur le bon déroulement des projets contractuels en cours de l'unité, de discuter de la pertinence des projets en cours de montage et procéder à la sélection et l’organisation des réponses à appels à projets et enfin de veiller à la valorisation des travaux.
B 4.5.d. **Revues de direction**

En vue de l’amélioration continue de la qualité et de l’efficacité des processus internes, une revue de direction de l’unité est organisée une fois par an (1er trimestre) et fait l’objet d’un compte rendu établi par le Correspondant qualité. Ce compte rendu est mis à la disposition de l’ensemble du personnel de l’unité et adressé à la Direction de la Qualité de l’IFSTTAR (DQMN) pour que les éléments puissent être pris en compte lors de la revue de direction de l’organisme au mois de mars de chaque année.

B 4.5.e. **Ressources mutualisées**

L’ensemble des membres de l'unité ont un accès à un espace commun sécurisé sur un serveur informatique mis sur le réseau afin d’accéder à des ressources mutualisées (matériels, logiciels, etc…).

B 4.5.f. **Accueil des nouveaux arrivants**

Les nouveaux arrivants, qu’ils s’agisse de personnels permanents, de CDD, de doctorants ou encore de stagiaires sont sensibilisés individuellement à l’hygiène et la sécurité d’une part et à la qualité d’autre part par les personnes en charge de ces aspects, respectivement l’agent de sécurité et de prévention et l’agent chargé de la démarche qualité.

B 4.5.g. **Entretiens individuels des personnels ITA**

Un entretien individuel d'évaluation (EIE) est mené par le directeur du laboratoire chaque année pour les personnels ITA du laboratoire, qu'ils soient statutaires ou stagiaires. Les personnels CDD ITA dont la durée du contrat est supérieure à 2 ans sont également concernés. Ces entretiens sont statutaires et obligatoires au sein de l'IFSTTAR. Ils permettent d'établir un bilan d'activité et une programmation des objectifs à atteindre et des formations pour l'année suivante. Un dossier d'évaluation individuel est remis au SRH de l'IFSTTAR à l'issue de l'entretien.

B 5. **Faits marquants**

- **Banc de test cyclage actif à haute température:**

 Cet outil expérimental a été conçu afin de mener des essais de vieillissements par cyclage actif (ou de puissance par auto-échauffement) de dispositifs à base de semi-conducteurs grands-gaps (SiC) en simulant des températures ambiantes élevées (200°C).

 Cet outil est original car peu de moyens de tests de ce genre existent à ces niveaux de températures. Les difficultés tiennent à l’instrumentation spécifique nécessaire à ces niveaux de températures et à la forte sensibilité des caractéristiques des composants liées aux très fortes densités de puissance.

- **Banc de cyclage des supercaps:**

 Nous avons contribué à l’élaboration d’une norme CEI sur les méthodologies de mesures et la standardisation des protocoles d’essai de ces composants. Nous avons conçu et breveté un banc de caractérisation électrique des super-condensateurs pour des profils de mission automobiles et ferroviaires (fort courant).
Projet F-City H2

Les travaux, menés au sein du FCLAB (UTBM M3M, INEVA, IFSTTAR) dans le cadre du projet F-City H2, sur la sûreté de fonctionnement du «module énergie MICHELIN» PAC-batterie équipant la chaine de traction d'un véhicule électrique ont donnés lieu à une première nationale : l'homologation en France d'un véhicule roulant à l'hydrogène conformément au règlement communautaire européen (décembre 2011).

![Véhicule F-City H2 à PAC et batterie.](image)

B 6. Réalisations

B 6.1. Production scientifique

<table>
<thead>
<tr>
<th>Publications</th>
<th>2011</th>
<th>2012</th>
<th>(jan./juin)</th>
<th>Bilan période</th>
<th>Ratio/CTP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revues à comité de lecture</td>
<td>15</td>
<td>11</td>
<td>8</td>
<td>34</td>
<td>1.7</td>
</tr>
<tr>
<td>dont Internationales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>8</td>
<td>7</td>
<td>28</td>
<td>1.4</td>
</tr>
<tr>
<td>dont Nationales</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>6</td>
<td>0.3</td>
</tr>
<tr>
<td>Communications dans les conférences avec actes et</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>comités de lectures</td>
<td>18</td>
<td>9</td>
<td>8</td>
<td>35</td>
<td>1.7</td>
</tr>
<tr>
<td>dont Internationales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>8</td>
<td>8</td>
<td>30</td>
<td>1.5</td>
</tr>
<tr>
<td>dont Nationales</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>0.2</td>
</tr>
<tr>
<td>Ouvrages & contributions à chapitres d'ouvrages</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0.1</td>
</tr>
<tr>
<td>Rapports scientifiques (expertises, rapport de contrats,...)</td>
<td>6</td>
<td>9</td>
<td>4</td>
<td>19</td>
<td>0.9</td>
</tr>
<tr>
<td>Total</td>
<td>42</td>
<td>29</td>
<td>18</td>
<td>88</td>
<td>4.4</td>
</tr>
</tbody>
</table>

Tableau 4: Production scientifique

B 6.2. Rayonnement et attractivité académiques

B 6.2.a. Participations à des projets collaboratifs nationaux et internationaux

Le laboratoire participe à de nombreux projets de recherche collaboratifs internationaux et nationaux. Au cours de la période d'évaluation qui va de fin décembre 2010 à juin 2013, nous pouvons compter 20 projets dont :

- projets FP7 et 1 REX : MOBYPOST (JTI), FABRIC (PI), HYCON-2 (NOE)
- projets "investissements d'avenir" dont 2 AMI "appels à manifestation d'intérêt" (Hybrelec et MoveoTreve) et un PSPC "projet structurant des pôles de compétitivité" (McGaN).
- 9 projets ANR : ARCHYBALD (Predit), DIAPASON-2 (HPAC), SIMSTOCK (VTT), SUPERSTORE (VTT), SUPERCAL (VTT), REMAPODE (P2IC), MOS-i-stars (VTT), ECLIPSE (Blanc), FIDEA (VTT).
- projets FUI : MEMOIRE, SIC-HT2, THERMELEC, MENKAR, SEFORA, SOFRACI.

Sur l'ensemble des 20 projets cités ci-dessus, 14 ont débutés avant la période d'évaluation et 9 se sont terminés pendant celle-ci. Par conséquent 6 ont débutés durant la période d'évaluation et 11 sont en cours. Ceci montre la très forte implication des personnels du LTN dans les projets collaboratifs nationaux et internationaux. Une liste détaillée de ces projets est donnée en annexe 6.
B 6.2.b. Collaborations les plus suivies avec d'autres laboratoires

Les collaborations citées ci-dessous, sont celles qui ont donnés lieu à des collaborations suivies et régulières à travers non seulement des projets collaboratifs mais également parfois à travers des actions bilatérales sur fonds propres et des thèses en co-encadrements. Ces collaborations sont structurantes pour les activités du laboratoire.

- Le SATIE sur la modélisation thermique puis la robustesse de composants à base de Si et SiC vis-à-vis de régimes extrêmes répétitifs (avalanches, courts-circuits), depuis 1998.
- L'IES (Montpellier) sur des travaux de vieillissement d'IGBT de forte puissance en cyclage actifs sous régimes MLI, depuis 2005.
- AMPERE (Lyon) sur le comportement et la fiabilité des composants à base de SiC et les technologies d'assemblages associées ainsi que sur le vieillissement des super-condensateurs, depuis 2002.
- Le G2ELab (Grenoble) sur des travaux portant sur de nouvelles structures d'intégration de puissance, depuis 2009.
- LAPLACE (Toulouse) sur des technologies d'assemblages des composants de puissance, depuis 2007.
- FEMTO-ST et IRTES (UTBM) sur la caractérisation, le diagnostic des piles à combustible et leur intégration dans les systèmes de transport
- Le LGEP (Paris XI) sur les architectures de convertisseur pour systèmes pile à combustible et ensemble convertisseur-machine pour VE, modes de fonctionnement dégradés et tolérance aux pannes
- L'IFPEn sur le stockage et la gestion de l’énergie, depuis 2007
- Le CEA depuis 2002 sur la PAC, le stockage d’énergie et les composants semi-conducteurs GaN.

B 6.2.c. Participations à des instances de pilotage de la recherche

Participation à l'Alliance Nationale de Coordination de la Recherche pour l'Energie (ANCRE), 1 membre.

B 6.2.d. Réseaux scientifiques

Au niveau international, le laboratoire participe à une action COST - MP1004 (Hybrid Energy Storage Devices and Systems for Mobile and Stationary Applications) et au Réseau d'Excellence HYCON2 (Highly-complex and networked control systems). Depuis, mars 2013, le laboratoire fait également partie des centres de compétences du réseau ECPE (European Center for Power Electronics).

Au niveau national, le laboratoire participe de manière régulière aux travaux de deux GDR du CNRS : SEEDS (Systèmes d'Energie Electrique dans leur Dimension Sociétale) et PACS (Piles à combustibles & systèmes).

Au niveau régional, le laboratoire fait partie de la structure collaborative de recherche SPEE Labs qui lie les quatre laboratoires de Génie Electrique du sud parisien (le SATIE de l'ENS-Cachan, le LGEP de Supelec/CNRS, le département Energie de Supelec et le LTN de l'IFSTTAR). Par ailleurs, le LTN participe au projet REGENEO "Stabilité des véhicules actionnés par des moteurs-roues électriques: gestion des défaillances et impact de freinage régénératif" du RTRA DIGITEO.

B 6.2.e. Structures d'animation de la recherche et d'évaluation

- Participation au comité directeur du GIS 3DPhi (1 membre)
- Participation à l'évaluation de l'Institut Franco-Allemand Saint Louis (ISL) en 2012 (1 membre)
- Participation à la commission nationale d'évaluation des chercheurs de l'Ifisttar (1 membre)

B 6.2.f. Comités scientifiques de grandes conférences

- Participation au comité d'organisation de la conférence internationale "Automotive Power Electronics" APE 2011 (1 membre) ainsi qu'à celui du 4eme "European Symposium on Super Capacitors & Applications" ESSCAP 2010 (2 membres).
- Participation au Steering comité International de EPE (ECCE Europe), (1 membre)
- Participation au comité scientifique EPF (1 membre)
B 6.2.g. Comité de standardisation international

B 6.2.h. Participation à l’expertise de projets /régionaux/nationaux/internationaux

Les membres du LTN participent à des expertises de différents types de projets :
- Expertises de projets internationaux pour le compte de :
 - Agence Lettone de recherche "Latvian Council of Science" (Lettonie),
 - Université libre de Bruxelles (Belgique),
 - Fond de recherche nature et technologie (Québec),
 - Université du Luxembourg (Luxembourg).
- Expertises de projets nationaux :
 - projets BQR (Bonus Qualité Recherche) de laboratoires universitaires,
 - projets de recherche de la Fondation de Recherche pour l'Aéronautique et l'Espace (FNRAE),
 - projets de recherche de l'ANR,
 - projets de recherche du FUI.

B 6.2.i. Organisation de manifestations scientifiques

B 6.2.j. Participation à des jurys de thèses et HDR (sur la période)

Le tableau suivant donne le nombre de participation aux jurys de thèse et HDR. Si l'on tient compte du fait que le laboratoire a compté seulement 2 HDR sur la période, la 3ème HDR ayant été soutenue fin janvier 2013, le tableau fait ressortir une moyenne de plus de 1 participation à jury par mois sur toute la période d'évaluation.

<table>
<thead>
<tr>
<th>Jury de thèse</th>
<th>Jury HDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>28</td>
</tr>
</tbody>
</table>

Tableau 5: Participations aux jurys sur la période (décembre 2010 – juin 2013)

B 6.3. Interactions avec l’environnement social, économique et culturel

Le laboratoire a traditionnellement des liens très forts avec les acteurs économiques comme montré dans la figure suivante et en particulier les industriels du transport, les équipementiers, les opérateurs transports, des industriels des composants. De plus les personnels ont largement contribué au projet de l'IEED VEDECOM dont l'un des programmes, l'électrification des véhicules, est particulièrement ciblé sur les activités du laboratoire. Plusieurs des projets récents ont été déposés dans le cadre et en collaboration avec cet IEED. Ces partenariats se traduisent par de nombreux projets collaboratifs apportant la plupart des ressources propres du laboratoire.

Nous sommes également en lien étroit avec les structures de pilotage du pôle de compétitivité Movéo. Deux membres du laboratoire participent régulièrement aux instances de ce pôle à travers les DAS (Directions d’Actions Stratégiques) en lien avec nos activités. Il s'agit du DAS Système de Stockage d'Energie (SSE) et du DAS Systèmes Mécatroniques pour l'Electrification du Véhicule (SME).
Au-delà des activités de recherche partenariales, l'interaction avec le monde économique se fait aussi à travers une activité d'expertise, essentiellement portée par un personnel IR (D. Bied-Charreton). Celle-ci est spécifiquement liée à de l'expertise de systèmes ferroviaires pour le compte de l'agence de certification CERTIFER.

Le bilan des ressources propres (contrats) est fourni dans le tableau 6. Le détail est donné en ce qui concerne les subventions obtenues sur projets ANR, les projets FUI, les projets d'investissements d'avenir (PIA) comme les projets structurants des pôles de compétitivité (PSPC) ou à motivation d'intérêts (AMI), les projets européens (PCRD) et enfin les contrats industriels directs. Pour plus de justesse dans l'évaluation, les montants indiqués tiennent compte du prorata des durées des projets sur la période d'évaluation. Ainsi, les montants des subventions sont fractionnés de manière homogène pour ne tenir compte que de la partie allant de décembre 2010 à juin 2013.

<table>
<thead>
<tr>
<th>Bilan période (k€)</th>
<th>Ratio/CTP (k€/CTP)</th>
<th>Part (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANR</td>
<td>1 416</td>
<td>69</td>
</tr>
<tr>
<td>FUI</td>
<td>724</td>
<td>35</td>
</tr>
<tr>
<td>PIA</td>
<td>405</td>
<td>20</td>
</tr>
<tr>
<td>PCRD</td>
<td>140</td>
<td>7</td>
</tr>
<tr>
<td>Contrats industriels/expertises</td>
<td>188</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>2 873</td>
<td>140</td>
</tr>
</tbody>
</table>

Le montant total des ressources sur la période d'évaluation, toutes sources confondues, est de 2.873 M€, soit environ 140 k€ par chercheur et par an en moyenne. Ces moyens ont permis le financement de la plupart des thèses du laboratoire et de nombreux équipements pour les activités de recherche.

B 7. Implication de l’unité dans la formation par la recherche

B 7.1. Ecole doctorale

Le laboratoire est rattaché à l'Ecole doctorale Sciences Pratiques (EDSP, ED 285) de l'ENS-Cachan où les trois habilités du laboratoire sont inscrites.
B 7.2. Implication dans l’enseignement niveau Master

Hormis Thierry Kociniewski, enseignant-chercheur de l'UVSQ en délégation, les personnels du laboratoire n'ont pas d'obligation réglementaire d'enseignement. Cependant, l'implication dans l'activité d'enseignement et notamment au niveau Master 2 est notable. Les formations de master pour lesquelles les personnels du LTN apportent une contribution sont :

- Master PIE (Physique et Ingénierie de l'Energie), co-habilitée ENS-Cachan, Paris-XI, Supelec.
- Master VTD (Véhicules et Transports Durables), co-habilité ENS-Cachan, IFP school, Supelec, Centrale Paris.
- Master Energie (UFR STGI) de l'université Franche-Comté
- Master2 de l'ESME-Sudria/ED STITS (12h/an)

Le tableau suivant récapitule les interventions d'enseignement au niveau Master 2 recherche. On peut y voir que globalement, sur l'ensemble de la période, 6h de cours à ce niveau sont effectués par CTP (chercheur temps plein). Enfin, le laboratoire accueille régulièrement 3 ou 4 étudiants de masters chaque année pour des stages encadrés et formation à la recherche.

<table>
<thead>
<tr>
<th>Master</th>
<th>2011 (nb. heures)</th>
<th>2012 (nb. heures)</th>
<th>2013 (nb. heures)</th>
<th>Bilan période/CTP</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIE</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>0.9</td>
</tr>
<tr>
<td>VTD</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>0.45</td>
</tr>
<tr>
<td>Energie</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>2.6</td>
</tr>
<tr>
<td>TraDD</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0.1</td>
</tr>
<tr>
<td>ESME-Sudria/STITS</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>1.8</td>
</tr>
<tr>
<td>Total</td>
<td>41</td>
<td>41</td>
<td>41</td>
<td>6</td>
</tr>
</tbody>
</table>

Tableau 7: Bilan des enseignements de Master 2 recherche
C 1. Stratégie et perspectives scientifiques pour le futur contrat

C 1.1. Politique et stratégie générale

La structure actuelle du laboratoire a été pensée pour préparer notre arrivée sur le Plateau de Saclay au cours du prochain quinquennat. Le déménagement est prévu pour septembre 2018 et de nombreux points administratifs, d’organisation et de positionnement scientifique doivent être traités. Cette structure intègre une augmentation du nombre de tutelles qui devrait passer des 4 actuelles – l’ENS Cachan, le CNRS, le CNAM, l’UCP – à 7 avec l’arrivée de :

- l’ENS Rennes (à partir du 1er janvier 2014),
- l’IFSTTAR (à partir du 1er janvier 2015) avec l’intégration du LTN,
- et de l’Université Paris-Sud (à partir du 1er janvier 2015) avec l’intégration attendue d’ACCIS.

Cette organisation s’intègre dans une volonté de structuration de la communauté d’universités et d’établissement "Université Paris-Saclay" (UPSay). Le laboratoire SATIE sera rattaché aux départements EOE (Electrical and Optical Engineering) (voir en annexe) et STIC de l'Université Paris-Saclay. Le département EOE a pour objectif d'organiser les activités de recherche touchant à l'ingénierie électrique, optique et électronique pour renforcer notamment la visibilité et la reconnaissance de l'ingénierie au sein de l'UPSay. Cette synergie implique 18 laboratoires Sud-Franciliens de l'IDEX Paris-Saclay, 2 LabEx (NanoSaclay, LaSIPS dans lequel SATIE a été moteur), et des projets de regroupement de plateformes d'envergure (Centre de Nanosciences et Nanotechnologies, Nanodesign). Le département STIC quant à lui organise et valorise la recherche autour des technologies de l'information sur le plateau de Saclay. Il implique 17 laboratoires le LabEx DigiCosm et l'EquipEx DigiScope. Ces deux départements ont pour objectif commun de créer un courant d'innovation au service des enjeux socio-économiques. Une dimension formation par la recherche est également prise en compte pour favoriser l'insertion professionnelle de nos doctorants au travers de projets partenariaux.

SATIE a la volonté de s'appuyer sur ces deux départements pour développer efficacement une compétence transversale et systémique au sein de l'UPSay.

Dans cette optique, l'intégration du LTN au pôle CSEE, puis celle de l'équipe ACCIS au pôle SIAME, doivent nous servir à affirmer notre identité en Electrical Engineering. En effet, notre originalité en Île de France repose sur un travail resserré impliquant les communautés 61 et 63 sur des systèmes avec une forte appétence pour l'expérimentation. Cette pluridisciplinarité nous permet de répondre à des problèmes relevant de l'Electrical Engineering dans toutes ses dimensions scientifiques. Au niveau local, nous développerons les activités de modélisation et de conception multiphysiques en relation avec l’institut Farman et le LabEx LaSIPS, et nous renforcerons nos activités liées au transport décarbonné par une implication accrue au sein de l’IEED Vedecom.

Les activités du pôle CS2E resteront en interaction forte avec les enjeux sociétaux des transports et de la récupération des ressources renouvelables, ceci dans un contexte de compétences élargies grâce à l’arrivée du LTN. Les activités de SIAME continueront de couvrir un champ allant de l'observation, l'identification, le diagnostic et le contrôle de systèmes physiques à l'étude et la conception de systèmes micro-structurés pour des applications biologiques et médicales autour de 3 groupes actuellement en place.

La figure 9 résume les activités principales du pôle CSEE dans le domaine de l'électronique de puissance. Elle inclut des thèmes scientifiques tels que l'énergie éolienne, l'énergie solaire, l'énergie hydraulique et l'énergie thermique. Les thèmes scientifiques de l'énergie éolienne et solaire sont particulièrement importants en raison du potentiel énergétique de ces sources. L'énergie hydraulique est également un thème important en raison de sa grande capacité d'énergie. L'énergie thermique est un autre thème important en raison de son potentiel pour la production d'énergie. En conclusion, l'énergie renouvelable est un domaine d'investissement important dans le monde actuel.
Au-delà des activités spécifiques qui constituent l’identité de chaque groupe, le pôle CS2E souhaite particulièrement mettre en exergue trois actions transversales, qui lui apparaissent à la fois majeures et réalisables durant le prochain quinquennal. Nous indiquons à titre d’exemple les moyens associés et les organisations envisagées autour de ces actions qui engloberont aussi bien les matériaux et composants que les systèmes électriques.

a. **La gestion optimale de l’énergie électrique dans les transports et le bâ­timent basse consommation**

La gestion optimale de l’énergie (incluant le stockage) dans ces domaines impose d’avoir une méthodologie « système » qui inclut les sources d’énergie mais qui vise aussi à améliorer les rendements énergétiques de chaque composant ou sous-système sur l’ensemble de leur cycle de vie, c’est à dire en considérant leur énergie grise et leur vieillissement. Les thèmes à développer concernent entre autres la mise en œuvre de dispositifs de stockage de l’énergie électrique, existants ou innovants, qu’ils soient distribués ou non, l’étude de leur sûreté de fonctionnement ainsi que celle des convertisseurs associés et l’analyse de leurs modes de défaillance. De nouvelles approches méthodologiques sont envisagées dans ce thème pour y introduire en particulier le comportement de l’usager dans sa pratique de consommation dans des contextes bien spécifiés (transports, résidence) ainsi que des données stochastiques sur les sources.

Par ailleurs, les supports opérationnels pour la gestion de l’énergie électrique, basés sur FPGA, mettent en œuvre des algorithmes complexes dont on cherchera à accroître les performances. Nous renforcerons nos activités de simulation en temps-réel pour le développement de ces algorithmes en modélisant l’ensemble des constituants des chaînes de conversion de l’énergie.

Les modes de contrôle et les technologies à mettre en œuvre dépendent du niveau d’énergie à gérer, en particulier pour les systèmes à très faible énergie.6

Pour mener à bien ces objectifs, nous continuerons bien sûr, à nous appuyer sur nos moyens propres (plates-formes, bancs expérimentaux et de caractérisation) et sur les collaborations locales et externes que nous entretenons dans le cadre du GDR SEEDS.

Ces objectifs requièrent l’élaboration de matériaux magnétiques plus performants tant en haute fréquence pour la conversion statique qu’à plus basse fréquence dans les actionneurs électromagnétiques. Le but global est la réduction

6 Dispositifs de veille, réseaux de capteurs, nœuds communicants etc…
des pertes par une meilleure connaissance de leur physique et une modélisation approfondie, basée sur des procédés de caractérisation performants.

Ces objectifs requièrent aussi des approches méthodologiques spécifiques basées sur le développement de modèles pour la conception et d’y associer des techniques d’optimisation pour lesquelles des partenariats pourront être recherchés.

\[\text{A titre d’illustration, les projets suivants sont inclus dans cette action : transducteurs non-conventionnels, ensemble intégré convertisseur-machine, matériaux magnétiques granulaires, matériaux multi-ferroïques, projet MEGAN sur le packaging des composants GaN et SiC.} \]

\[\text{Les verrous à lever sont : procédés d’intégration des composants actifs et passifs dans le PCB, compatibilité matériaux, gestion thermique et CEM des dispositifs fortement intégrés, modèles multi-physiques performants et fiables dans une large gamme de sollicitation, méthode d’optimisation adaptée aux problèmes complexes, techniques de réduction de modèles,…} \]

c. **L’éco-conception et l’amélioration de l’utilisation et de l’exploitation des actionneurs électriques et des convertisseurs statiques**

Cette action constitue une démarche transversale dans le pôle, elle est structurée autour des idées suivantes :

- La prise en compte des impacts environnementaux des composants et des systèmes tant dans leur phase de conception et de dimensionnement que durant leur vie et lors de leur recyclage où leur mode de gestion jouera un rôle important. Cette approche a débuté au sein des groupes SETE et MME (fabrication moins polluante d’aimants, refroidissement magnétothermal) et nous souhaitons l’étendre progressivement à l’ensemble du pôle et notamment dans le cadre de l’action « accroissement de la densité de puissance », car les contraintes d’intégration sont souvent antinomiques de celles de recyclage.

- L’amélioration de la robustesse, de la fiabilité et de la disponibilité de ces dispositifs doit être poursuivie (par exemple au regard des matériaux, de leurs constituants, de leurs topologies, de leurs modes d’alimentation). En particulier, il est nécessaire de connaître la manière dont vieillissent « in vivo" les convertisseurs et leurs composants dans leurs applications et d'aboutir à des modèles macroscopiques de durée de vie ou de vieillissement adaptables à cette l’échelle, véritable verrou scientifique. En particulier, nous envisageons de développer, avec le groupe II du pôle SIAME, la thématique de l’instrumentation intégrée pour le diagnostic des modules et convertisseurs de puissance fortement intégrés. Par ailleurs, la question du fonctionnement des ensembles convertisseurs-machines en mode dégradé doit être posée lors de la conception afin de toujours garantir la continuité de service 7.

- La compatibilité électromagnétique (CEM) restera aussi un domaine d’intérêt fort en termes de méthodologie et de nouveaux concepts au regard des contraintes d’exploitation des dispositifs électromécaniques ou électroniques.

\[\text{A titre d’illustration, les projets suivants sont inclus dans cette action : modes de dégradation et physique des défaillances des composants de puissance à base de semi-conducteurs grands-gaps (SiC et GaN), étude des technologies innovantes de super-condensateurs de type "hybride", filtrage CEM actif, gestion dynamique des commandes, packaging pour la CEM VHF, capteurs fortement intégrés dédiés au diagnostic et à la mesure faiblement invasives de courants à large bande passante, ensembles machine-convertisseurs robustes,....} \]

\[\text{Les verrous à lever sont : méthodologies innovantes pour caractériser et quantifier le vieillissement sur le plan expérimental, mécanismes de dégradation et leur modélisation, élaboration de} \]

7 C’est le cas en particulier des chaines de traction mais aussi des systèmes de génération d’énergie pour lesquels la perte de productivité et les coûts de maintenance constituent des éléments de premier ordre.
d. **Le projet au travers des moyens communs du pôle**

Plus qu’une focalisation sur des thèmes de recherche très spécifiques qui pourraient monopoliser les groupes de CS2E, il nous paraît important pour notre projet de renforcer les domaines d’intérêt communs aux groupes ; nous en citerons trois :

- Le renforcement du partage des outils méthodologiques : un exemple peut être donné à propos des modèles de vieillissement (composants actifs et de stockage) qui sont déclinés avec une approche « physique » dans EPI et TN ou avec une approche « système » dans SETE. La convergence de ces approches devrait ouvrir de nouvelles perspectives en termes de modèles de conception des dispositifs. Pour renforcer cette démarche de partage d’outils méthodologiques, le profil recherche du poste du maître de conférences recruté au CNAM en 2013 a été clairement orienté pour associer les méthodes et technologies de l’intégration en électronique de puissance d’EPI avec celles développées dans SETE en termes d’éco-conception. Enfin, la question des modèles et méthodes d’optimisation pour la conception se pose à tous les groupes, elle constitue naturellement un lien transversal que nous souhaitons renforcer.

- Le développement de nouvelles plateformes expérimentales et de moyens logiciels utilisables par plusieurs groupes : c’est la conséquence de la proposition précédente : notre culture scientifique systématiquement appuyée sur des dispositifs expérimentaux nécessitera le développement de moyens expérimentaux nouveaux dans ces thématiques. De même, une plate-forme logicielle pour traiter de l’optimisation de structures et/ou de commandes peut constituer une autre mutualisation d’outils.

- La capitalisation des outils : nous avons souvent fait le constat de pertes de compétences lorsque le doctorant ou le post-doctorant qui a développé tel ou tel outil logiciel ou expérimental quitte le laboratoire. Il nous faut absolument remédier à cette lacune. La pérennisation du patrimoine de connaissances du pôle doit être assurée en améliorant nos pratiques : des efforts sont à consentir pour rationaliser le développement d’outils logiciels dans une logique de « boîte à outils ». Toute nouvelle brique logicielle créée doit pouvoir se capitaliser et être exploité dans un environnement ouvert à l’ensemble du pôle. Cela signifie un effort de rationalisation sur les choix des logiciels employés pour développer nos outils, sur leur pérennité et sur leur documentation. Cet objectif nécessite aussi que des moyens humains spécifiques y soient consacrés : la présence d’ingénieurs en nombre suffisant est indispensable, en particulier un ingénieur de recherche spécialisé dans l’instrumentation pour l’assistance à nos nombreuses plates-formes très souvent pilotées par des dispositifs numériques. Nous en faisons régulièrement la demande et nous souhaitons que nos tutelles prennent la mesure des enjeux ; notamment par comparaison avec des laboratoires de notre domaine souvent mieux pourvus.

Ces évolutions s’inscriront dans les activités des différents groupes qui, par ailleurs, ont toute légitimité pour continuer à travailler sur les thèmes de recherche spécifiques qui leur ont donné une reconnaissance nationale et internationale.

e. **En perspective**

Dans les domaines de recherche abordés par CSEE et qui touchent aux problèmes sociétaux, une ouverture à d’autres disciplines relevant des SHS sera recherchée, en particulier dans les thématiques de l’énergie-transport et de l’énergie-bâtiment. En effet, ces systèmes doivent non seulement répondre à des impératifs énergétiques, mais aussi à des critères d'adaptabilité voire d’acceptabilité qui ne peuvent être définis qu’au travers d’une analyse fine basée sur des enquêtes sociologiques d’ampleur. Ces partenariats pourront être initiés par le biais de séminaires ou d’invitation d’experts afin de poser scientifiquement les bases du traitement des questions soulevées.

8 Par exemple un micro-réseau embarqué dans un véhicule urbain instrumenté reconfigurable, utilisable tant pour des études de CEM que pour tester différents types d’équipements (convertisseurs, actionneurs, dispositifs de stockages, ..)
C 1.2.b. Dans le pôle SIAME

Figure 10 : Activités principales du pôle SIAME

Que ce soit du point de vue qualité, fiabilité et sécurité des systèmes d' instrumentation, d'imagerie et de contrôle des milieux complexes, il est nécessaire d'en améliorer les performances. Le pôle SIAME poursuivra cet objectif en optimisant simultanément la conception des systèmes instrumentaux multi-capteurs, multimodaux et le traitement de l'information (matériel et logiciel) multi-échelles. Les techniques existantes fournissent des informations certes complémentaires mais restent néanmoins mal adaptées aux performances recherchées et ne répondent pas totalement aux enjeux d'identification à différentes échelles. De plus leurs comportements spatio-temporel peuvent évoluer en fonction des conditions environnementales et doivent être analysés par exemple dans un but thérapeutique (microsystèmes applications biomédicales) ou encore environnementale (extraction d’énergie de composés intra cellulaires, identification de canaux de propagation). Il est nécessaire de continuer à développer un socle méthodologique fort relevant de l'automatique, du traitement du signal, et de l'instrumentation.

Ainsi, le pôle SIAME cherche à mettre en œuvre des techniques d'investigation dédiées, avec ou sans contact, utilisant la caractérisation des ondes optiques, électromagnétiques et/ou acoustiques interagissant avec la matière investiguée. Il développe ainsi l'ensemble de la chaine de mesure, du capteur et du biocapteur au système de traitement
et d'analyse du signal. Pluridisciplinaire par essence, notre projet met donc en synergie les champs thématiques développés à SATIE.

a. Signaux et systèmes

Les travaux de recherche d’ordre méthodologique en traitement du signal et en automatique sont des domaines dans lesquels nous sommes reconnus. Le travail d'amélioration de la sensibilité de caractérisation et de contrôle non destructif doit être poursuivi. L'influence de la position des capteurs doit être finement quantifiée ainsi que l'influence des erreurs de positionnement. De nouveaux algorithmes doivent être développés pour prendre en compte cette sensibilité. Une collaboration avec des spécialistes du Space-Time Adaptive Processing (STAP) est envisagée pour traiter le cas de cibles mobiles. Afin de compléter les données lacunaires d'un système multi-capteurs, il est nécessaire d'ajouter des informations à priori sur la nature de la cible. Il faut donc être capable d'attribuer un modèle de cible pertinent qui remplace le modèle classique de points brillants. Ce travail ne peut être mené qu'à partir d'une étude de modèle direct. Une fois cette approche réalisée, il est nécessaire de l'intégrer à de nouveaux algorithmes. La robustesse de ces algorithmes doit être déterminée.

Nous participons également au projet DISPLAY de l’appel à projet MASTODONS du CNRS pour confronter nos savoir-faire aux problématiques relevant des « big data » sur un réseau d’observation du ciel de très grandes dimensions (plusieurs dizaines de milliers de capteurs répartis en Europe). Dans ce contexte, il nous apparaît naturel de conforter notre position notamment sur les aspects traitements de signaux multi-capteurs et études de performances associés, ainsi que sur l’estimation et la commande pour les grands systèmes avec l’analyse algébrique. Les algorithmes développés seront appliqués dans les systèmes d’imagerie développés dans le pôle.

A titre d’illustration, nous développerons des algorithmes exploitant l’échantillonnage compressif pour systèmes d'imagerie dans les sciences du vivant (ex. IRM 2D développé avec le pôle CSEE, systèmes tomographiques...).

Les verrous à lever sont : Développement d’algorithmes fiables fonctionnant sous des scénarios draconiens (faible nombre d’échantillons, faible RSB...),

Les arrivées de Thomas Rodet comme professeur au département EEA et des membres d'ACCIS viendront renforcer nos compétences méthodologiques sur cet axe. Au delà de cet apport, ils nous permettront de renforcer les interactions de SIAME avec le pôle CSEE. En effet, les membres d'ACCIS pourront par exemple s’investir dans les ‘Systèmes automatisés de conduite libre en ambiance hybride’. L’innovation en matière de délégation de conduite, de connectivité et de sécurité coopérative, alliant performance et faible coût, nécessite un effort important de recherche moyen et long terme. Elle doit de plus être associée dès les premières investigations aux problématiques d’intégration et de mobilité urbaine spécifiques aux véhicules décarbonés automatisés.

D'un point de vue "signaux et systèmes", notre projet concerne la perception de l'environnement, la prise de décision, et l’action en particulier en temps réel. Ce challenge fait appel à une mutualisation des compétences dans des domaines aussi variés que l’automatique, le contrôle, les systèmes autonomes, le diagnostic, la fiabilité, le traitement du signal, les télécommunications, le traitement d’antennes, l’instrumentation, la physique et problèmes inverses, le monitoring médical et l’interfaçage homme machine (IHM).

Les verrous à lever sont : intégration de micro-systèmes, conditionnement et traitement de l’information de systèmes complexes.

b. Instruments innovants et capteurs multimodaux intelligents

Les thématiques de recherche actuelles sont orientées vers le développement d'instrumentations à l'appui de modèles semi-analytiques originaux. Les perspectives en termes de recherche et d’innovation sont très attractives : conception, modélisation et optimisation de systèmes de mesure, recherche d’une exploitation optimale des données capteurs (imagerie quantitative par exemple). Nos travaux portent sur les systèmes de contrôle de santé intégré aux structures d’une part et sur les capteurs pour l'imagerie et l'estimation de paramètres physiques de milieux, d'autre part (imagerie magnéto-optique pour le CND de pièces aéronautiques, capteurs capacitifs pour le contrôle des structures de génie civil, microscopie acoustique...).
Concernant la caractérisation des systèmes complexes, l'innovation en matière de capteurs est un enjeu important notamment en raison du nombre de caractéristiques à mesurer et de principes physiques associés. Il est en effet nécessaire de développer de nouvelles générations de capteurs multimodaux intelligents et communicants (dont l'intelligence est au plus proche du capteur).

A titre d’illustration, l'un des enjeux au-delà de la multimodalité est de doter ces nouveaux capteurs d'aptitudes complémentaires permettant de mesurer des phénomènes biologiques et physicochimiques à différentes échelles. Les évolutions technologiques s'accompagnent de besoins nouveaux en particulier, des capteurs assurant des mesures en continu avec un large spectre et une sélectivité plus fine.

Les verrous à lever sont : association à la fois des procédés de miniaturisation innovants et de la réalisation micro-technologiques de capteurs multi-physiques assurant la sélectivité souhaitée jusqu'à l'échelle moléculaire.

Si les capteurs sont dotés d'intelligence, l'échelle macroscopique pourra être observée par l'utilisation de réseaux de capteurs communicants. Ce dernier concept aujourd'hui facteur clé des systèmes complexes à plus grande échelle (véhicules décarbonnés autonomes en milieu urbain) ou plus futuristes dans la manipulation de nano-robots, peu trouver une application dans la mesure de l'efficacité et de l'innocuité en santé et bien être à l'échelle intermédiaire. La difficulté à récupérer l'information locale (modélisation physique de la transduction par capteur) et d'intégrer la totalité de l'information en temps réel nécessite d'utiliser des techniques de traitement du signal évolués afin de répondre à la fois aux contraintes d'intégration et de prendre en compte l'ensemble des paramètres nécessaires à la caractérisation souhaitée et à l'aide à la décision.

c. Biomatiériaux innovants pour le contrôle non destructif

Pour les applications en lien avec les sciences du vivant, l'utilisation de matériaux fonctionnalisés couplés à ces techniques d'investigation doit également permettre d'améliorer leur sélectivité et rendre possible l'identification et le suivi d'entités biologiques pour le diagnostic de pathologies encore mal connues ou la vérification de l'efficacité et même de l'innocuité de produits cosmétiques par exemple. Pour les sciences du vivant, le manque d'accessibilité à des technologies permettant de recueillir de façon reproductible et sans dégradation les échantillons explique pour l'instant le manque d'utilisation à grande échelle. Néanmoins dans une optique de vérification de l'efficacité et de l'innocuité des produits, l'intégration en amont de biomarqueurs, dès les premières étapes de conception d'un nouveau produit, doit pouvoir s'avérer efficace, surtout si cette stratégie intègre également le type d'instruments ou de capteurs capables de récupérer l'information. D'autres verrous doivent également être levés. Il est ainsi nécessaire de développer des méthodes d'analyse et de contrôle qualité pour la caractérisation, la purification, la stabilité des composants. Ces technologies sont également applicables au diagnostic d'agents sur les chaînes de production. Quel que soit leur champ d'application, les tests de diagnostic rapide contribueront à la compréhension des processus de vieillissement et de dégradation.

Les matériaux fonctionnalisés recherchés dans une optique de CND sont des matériaux capables d'interagir avec le capteur en fonction des modifications de l'environnement extérieur. Ce sont des matériaux complexes, souvent hybrides organiques/ inorganiques aux structures hiérarchiques qui ont pour intérêt d'insérer des molécules organiques dans une matrice minérale, proposant de nouvelles fonctionnalités sans altérer leurs propriétés respectives.

L'intégration de ces matériaux de fonctionnalités particulières (antistatique, antibactérienne, cicatrisants, photochromiques, à changement de phase, piézoélectriques, etc.) dans le produit final donne accès non seulement à des produits innovants mais aussi à de nouveaux systèmes pour l'instrumentation (nouveaux capteurs et actionneurs, et nano-manipulateurs).
A titre d’illustration, la maîtrise de l’ensemble des sciences et techniques liées aux matériaux jusqu’à l’application apparaît comme le facteur clé pour atteindre les performances recherchées. La conjonction de l’approche instrumentale et applicative peut par exemple permettre d’envisager des produits finis dont les fonctionnalités ne s’arrêteraient pas à l’application souhaitée mais pourraient de surcroît inclure des fonctionnalités dédiées au contrôle et au test.

Les verrous à lever : dans ce cadre, la connaissance fine des structures à l’échelle moléculaire nano-, méso- et macroscopique est nécessaire. La maîtrise des procédés de mise en œuvre et de traitement des matériaux, notamment grâce à la modélisation, est donc critique.

Certains chercheurs de l’équipe sont spécialisés dans la conception et la fabrication de microsystèmes à détection électrochimique et optique pour des applications principalement de nature biologique. En effet, la détection d’analytes biologiques et la mise au point de tests de diagnostic permettent de mieux comprendre les mécanismes liés à certaines pathologies et ainsi de mieux traiter certaines maladies.

Le développement de réseaux de micro-capteurs notamment de type électrochimiques dans lesquels chaque électrode est individuellement et spécifiquement conçue pour détecter un analyte particulier, permet l’accès à des outils analytiques performants pour la détection simultanée d’espèces multiples. Ce type de réseaux de multicapteurs est bien adapté à l’étude du comportement des cultures cellulaires ou de tranches de tissus biologiques pour analyser leurs réponses à un stimulus chimique ou physique.

En matière d’équipement, la future ENS de Rennes dispose d’une plate-forme microtechnologie qui permet d’envisager une collaboration efficace avec les sites universitaires Rennais. Pour rappel, cette plateforme est dédiée aux microtechniques, aux micro-dispositifs et à la micro-fabrication. Elle est composée d’une salle de caractérisation (morphologique et fonctionnelle) et d’une salle blanche classe 10000 de 80 m². Cette salle blanche offre une concentration particulaire maîtrisée, une régulation de la température, de l’humidité, et de la lumière pour certaines opérations sensibles aux rayonnements ultraviolets. Les équipements permettent l’élaboration, la mise en forme, le traitement de matériaux pour les microsystèmes ainsi que leur caractérisation.

Les moyens humains et matériels de l’ENS de Rennes viennent ainsi s’inscrire dans la complémentarité des deux autres groupes du pôle SIAME, à savoir II et MOSS.

En perspective du prochain quadriennal (2015-2020), le projet grand campus Paris Saclay offre vis à vis du laboratoire SATIE et des thématiques du pôle SIAME des perspectives de collaborations avec le Centre de Nanosciences et Nanotechnologies (C2N). La mise en place du C2N donnera naissance à une plateforme technologique au meilleur niveau mondial incluant des moyens de micro/nano-fabrication (superficie de salle blanche 2770 m²), de microfluidique, de cultures cellulaires (applications des micro-nano technologies à la biologie). Ce futur centre de recherche promet à la fois une recherche disciplinaire dans le domaine des nanosciences, des nano et microtechnologies, mais aussi une recherche pluridisciplinaire, à l’interface entre les nanotechnologies et la biologie (plateforme NANOBIO). Cette pluridisciplinarité est également au cœur des orientations de SATIE en synergie avec l’institut d’Alembert.

A titre d’illustration, il existe déjà une collaboration forte entre SATIE, l’Institut d’Alembert et l’IEF sur les développements micro-technologiques des biopuces à cellules pour la fusion cellulaire, de plus les axes thématiques du LPN autour de la micro/nanofluidique présentent des convergences avec les travaux développés par le groupe BIOMIS.

C 2. Gestion prévisionnelle des emplois SATIE

C 2.1.a. Stratégie générale de l’unité de recherche :

D’un point de vue très général, SATIE tient à augmenter le nombre de ses chercheurs relevant de la section 61. En effet, à l’heure où l’on voit se dégager sur le plateau de Saclay deux grands laboratoires mono-disciplinaires (LGEP (en 63ème section) et LSS (en 61ème section)), il nous apparaît essentiel de conforter SATIE dans le choix qui a été le sien ces dernières années : un laboratoire interdisciplinaire 63-61. En effet cette coexistence nous permet d’appréhender différents projets dans toutes leurs dimensions de "the electrical engineering".
Par ailleurs, le laboratoire a placé l'expérimentation au cœur de sa politique scientifique. Il compte aujourd'hui 2 IR, 2 IE et 1 technicien en support à l'expérimentation soit seulement 4% des chercheurs. Le laboratoire est de ce fait sous doté en ITA support à l'expérimentation de manière critique. Les travaux de recherche en pâtissent car les chercheurs doivent eux-mêmes effectuer de nombreuses réalisations et expérimentations qui pourraient être confiées à un personnel qualifié support. Malgré l'effort de mutualisation et compte tenu du nombre de plateformes cette situation est difficilement tenable. Un effort significatif de nos tutelles est nécessaire.

En ce qui concerne les pôles, un travail de restructuration a été effectué en prévision de l'intégration de savoir-faire complémentaire.

Pour le pôle CSEE : L’arrivée des chercheurs du LTN de l’IFSTTAR augmente considérablement les effectifs de cette équipe. Le quinquennat qui s’ouvre constitue ainsi une période d’observation/expérimentation pour le pôle CS2E au terme de laquelle il conviendra de réfléchir à son organisation et son périmètre scientifique : l’organisation en quatre groupes conservera t’elle sa pertinence au terme de cette période compte tenu des projets qui vont démarrer, des évolutions en cours et dans la perspective du déménagement sur le site de Saclay ? Nous nous donnons ce délai pour affiner notre organisation en laissant à chaque membre de CS2E la possibilité de choix d’orientation vers le groupe le mieux adapté à ses choix scientifiques, évidemment dans le cadre de la politique scientifique du pôle.

Pour le pôle SIAME : Des discussions sont en cours pour préparer l’intégration de l’équipe ACCIS de l’IEF (voir lettre jointe en annexe adressée aux tutelles concernées). Il est important de noter que les 13 membres de cette équipe relèvent de la 61ème section. De fait l’intégration d’ACCIS dans ce pôle permet d’atteindre l’équilibre recherché des deux communautés.

C 2.1.b. Besoins de l’unité

En conclusion, pour pallier les différents mouvements de personnel et pouvoir toujours continuer la mise en application de notre projet de recherche voici les besoins que nous émettons:

<table>
<thead>
<tr>
<th>Type</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCH</td>
<td>1 BAP C (CSEE)</td>
<td>1 BAP J</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IE</td>
<td>1 BAP C (CSEE)</td>
<td>1 BAP C (SIAME)</td>
<td>1 BAP J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IR</td>
<td>1 BAP C (CSEE)</td>
<td>1 BAP C (CSEE)</td>
<td>1 BAP C (CSEE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCF</td>
<td>1 en Génie Electrique (CSEE)</td>
<td>1 en Matériaux (CSEE)</td>
<td>1 en TS (SIAME)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PU</td>
<td>1 en Instrumentation (SIAME)</td>
<td>1 en Autom. (SIAME)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cherch.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR</td>
<td>1 en Microsystèmes (SIAME)</td>
<td>1 en Génie Electrique (CSEE)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DR</td>
<td>1 en Bio-Chimie (SIAME)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau 12 : Demande de postes toutes tutelles confondues

1 Ce poste sera demandé au titre de l'emploi en situation de handicap.
2 Nous demandons au CNRS que le poste d’IR de Katy Trèca qui fait valoir ses droits à la retraite soit republié en IR BAP C.
3 Remplacement de poste vacant au Cnam.
4 Remplacement de poste vacant à l'UCP.
Analyse SWOT

<table>
<thead>
<tr>
<th>Points Positifs</th>
<th>Points Négatifs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forces</td>
<td>Faiblesses</td>
</tr>
<tr>
<td>• Bonne attractivité (nombreux recrutements récents et en cours)</td>
<td>• Manque de personnel d'accompagnement de la recherche</td>
</tr>
<tr>
<td>• Capacité à balayer le continuum théorie-simulation-expérimentation-valorisation</td>
<td>• Répartition des chercheurs CNRS très inhomogènes</td>
</tr>
<tr>
<td>• Synergie pluridisciplinaire : Mélange des communautés 61 et 63</td>
<td>• Parité H/F fortement déséquilibrée</td>
</tr>
<tr>
<td>• Excellent soutien des tutelles universitaires</td>
<td>• Mutualisation difficile des équipements expérimentaux et des ressources humaines liée à l'implantation multi-sites.</td>
</tr>
<tr>
<td>• Plateformes techniques dédiées à l'expérimentation</td>
<td>• Projets fédérateurs inter-pôles à intensifier.</td>
</tr>
<tr>
<td>• Forte participation aux instances académiques et aux réseaux de recherche</td>
<td></td>
</tr>
<tr>
<td>• Forte capacité à obtenir des financements externes</td>
<td></td>
</tr>
<tr>
<td>Opportunités</td>
<td>Menaces</td>
</tr>
<tr>
<td>• Forte implication dans la création du LabEX LaSIPS département EOE dans la dynamique Saclay</td>
<td>• Manque de sérénité et de pérennité dans les actions liée aux modes de financement recherche à travers AAP</td>
</tr>
<tr>
<td>• Environnement favorable en terme d'attractivité et de collaborations dans la dynamique Saclay</td>
<td>• Charge croissante liée à la complexité administrative</td>
</tr>
<tr>
<td>• Seul laboratoire 61-63 prévu sur le plateau de Saclay</td>
<td>• Faiblesses pressentie des recrutements et promotions à venir.</td>
</tr>
<tr>
<td>• Réaménagements récents et augmentation surface des locaux</td>
<td>• Risque de perte de moyens lié aux politiques de site contradictoires</td>
</tr>
<tr>
<td>• Renforcement des travaux inter-pôles relatifs à l'électro-mobilité grâce à l'arrivée du LTN et d'ACCIS.</td>
<td></td>
</tr>
</tbody>
</table>

Section des unités de recherche

Partie C : Projet du laboratoire SATIE
Partie D - Annexes de SATIE

D 1. Annexe 1 : Présentation synthétique

D 1.1. Présentation synthétique du pôle CSEE

Unité de recherche : SATIE
Vague E : campagne d’évaluation 2013-2014

Titre de l’entité : pôle Composants et Systèmes pour l’Energie Electrique

Intitulé de l’unité : SATIE
Nom du directeur de l’unité : Pascal Larzabal
Nom du responsable de l’équipe (le cas échéant) : François COSTA

D 1.1.a. Effectifs de l’entité.
Dans les tableaux, on ramène les divers indicateurs à l’équivalent chercheur temps plein\(^9\) (CPT)

<table>
<thead>
<tr>
<th>Année</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>Moyenne Période</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTP</td>
<td>9,5</td>
<td>10</td>
<td>11</td>
<td>11,5</td>
<td>14</td>
<td>14,5</td>
</tr>
<tr>
<td>Tot. Pers.</td>
<td>18</td>
<td>19</td>
<td>21</td>
<td>22</td>
<td>25</td>
<td>25,7</td>
</tr>
<tr>
<td>CR</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>EC</td>
<td>17</td>
<td>18</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>20</td>
</tr>
<tr>
<td>IE-IR</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Tableau 1 : Personnel permanent du pôle CSEE par catégorie

![Figure 1 : Effectif par groupe du personnel permanent du pôle CSEE (équivalent temps plein)](image)

Effectifs doctorants par financements :

<table>
<thead>
<tr>
<th>Source de financement</th>
<th>08</th>
<th>09</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>Moyenne Période</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contrats doctoraux</td>
<td>16</td>
<td>16</td>
<td>18</td>
<td>17</td>
<td>17</td>
<td>13</td>
<td>16</td>
</tr>
<tr>
<td>Contrats collaboratifs publics</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>9</td>
<td>12</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>Contrats collaboratifs privés</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>11</td>
<td>8</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>Bourses organismes publics (DGA, CNRS, INRIA, CEA ...)</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Bourses organismes français pour étrangers</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>8</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>Total doctorants inscrits</td>
<td>36</td>
<td>35</td>
<td>41</td>
<td>45</td>
<td>46</td>
<td>36</td>
<td>40</td>
</tr>
</tbody>
</table>

Tableau 2

a. Personnels ayant quitté l’entité pendant le contrat en cours (et nombre de mois cumulés passés dans l’entité au cours de cette période).

<table>
<thead>
<tr>
<th>Prénom Nom</th>
<th>grade</th>
<th>Pôle</th>
<th>Année de départ</th>
<th>Temps passé (mois)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eric Labouré</td>
<td>MCF</td>
<td>CSEE</td>
<td>2008</td>
<td>12</td>
</tr>
<tr>
<td>Jean-Claude Faugiere</td>
<td>IE</td>
<td>CSEE</td>
<td>2012</td>
<td>60</td>
</tr>
</tbody>
</table>

9 On considèrera qu'un enseignant-chercheur correspond à 0,5 CTP.

Partie D : Annexes de SATIE
b. Nombre de recrutements réalisés au cours de la période considérée et origine des personnels

<table>
<thead>
<tr>
<th>Prénom, Nom</th>
<th>grade</th>
<th>Pôle</th>
<th>Année d'affectation</th>
<th>Etablissement d'affectation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marie Ruellan</td>
<td>MCF</td>
<td>CSEE</td>
<td>2008</td>
<td>UCP</td>
</tr>
<tr>
<td>Gilles Rostaing</td>
<td>MCF</td>
<td>CSEE</td>
<td>2009</td>
<td>ENSC</td>
</tr>
<tr>
<td>Mounira Berkani</td>
<td>MCF</td>
<td>CSEE</td>
<td>2010</td>
<td>UPEC</td>
</tr>
<tr>
<td>Javier Ojeda</td>
<td>MCF</td>
<td>CSEE</td>
<td>2010</td>
<td>ENSC</td>
</tr>
<tr>
<td>Sami Hlioui</td>
<td>MCF</td>
<td>CSEE</td>
<td>2011</td>
<td>CNAM</td>
</tr>
<tr>
<td>Lahoucine Idkhajine</td>
<td>MCF</td>
<td>CSEE</td>
<td>2011</td>
<td>UCP</td>
</tr>
<tr>
<td>Olivier De La Barriere</td>
<td>CR</td>
<td>CSEE</td>
<td>2012</td>
<td>CNRS</td>
</tr>
<tr>
<td>Guillaume Hérault</td>
<td>IE</td>
<td>CSEE</td>
<td>2012</td>
<td>CNAM</td>
</tr>
<tr>
<td>Denis Labrousse</td>
<td>MCF</td>
<td>CSEE</td>
<td>2012</td>
<td>CNAM</td>
</tr>
<tr>
<td>Oleksandr Pasko</td>
<td>Ch. CDI</td>
<td>CSEE</td>
<td>2012</td>
<td>CNRS</td>
</tr>
<tr>
<td>Mickael Petit</td>
<td>MCF</td>
<td>CSEE</td>
<td>Sept 2013</td>
<td>CNAM</td>
</tr>
</tbody>
</table>

D 1.1.b. Production scientifique au cours de la période écoulée (1er janvier 2008 - 30 juin 2013) :

1) Convertisseur DC-DC 28V/20W basé sur un transformateur piézoélectrique validé pour des applications spatiales développé en partenariat avec le CNES (2010).

2) Premier filtre actif CEM intégré dans un PCB (2012).

3) Réalisation d’une inductance monolithique fonctionnelle utilisant une bobine de cuivre frittée dans un noyau de ferrite (2010, brevet et extension internationale en cours).

4) Optimisation couplée des lois de gestion d’énergie au dimensionnement de systèmes énergétiques. Application aux houlogénérateurs directs.

5) Record mondial de coercivité pour un aimant ferrite anisotrope massif (0,4 T) synthétisé par frittage flash (SPS) d’une nano-poudre de ferrite de baryum (2010).

D 1.1.c. Bilan quantitatif des publications de l’entité.

<table>
<thead>
<tr>
<th>Productions scientifiques</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>bilan période</th>
<th>ratio/C</th>
<th>TP/an</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revues à comité de lecture nationales (ACL)</td>
<td>23</td>
<td>26</td>
<td>21</td>
<td>37</td>
<td>33</td>
<td>25</td>
<td>165</td>
<td>2,6</td>
<td></td>
</tr>
<tr>
<td>Communications dans les colloques internationaux avec actes et comité de lecture</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>6</td>
<td>3</td>
<td>4</td>
<td>19</td>
<td>0,3</td>
<td></td>
</tr>
<tr>
<td>dont conférences invitées</td>
<td>20</td>
<td>23</td>
<td>21</td>
<td>31</td>
<td>30</td>
<td>21</td>
<td>146</td>
<td>2,1</td>
<td></td>
</tr>
<tr>
<td>Ouvrages, contributions ou chapitres d’ouvrage</td>
<td>37</td>
<td>23</td>
<td>38</td>
<td>43</td>
<td>51</td>
<td>10</td>
<td>201</td>
<td>3,1</td>
<td></td>
</tr>
<tr>
<td>dont conférences invitées</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>11</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>Ouvrages, contributions ou chapitres d’ouvrage</td>
<td>14</td>
<td>7</td>
<td>9</td>
<td>7</td>
<td>14</td>
<td>0</td>
<td>51</td>
<td>0,8</td>
<td></td>
</tr>
<tr>
<td>dont conférences invitées</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>Total général</td>
<td>14</td>
<td>28</td>
<td>8</td>
<td>14</td>
<td>4</td>
<td>2</td>
<td>38</td>
<td>0,6</td>
<td></td>
</tr>
<tr>
<td>Ouvrages, contributions ou chapitres d’ouvrage</td>
<td>2</td>
<td>1</td>
<td>11</td>
<td>12</td>
<td>14</td>
<td>0</td>
<td>39</td>
<td>0,6</td>
<td></td>
</tr>
<tr>
<td>dont conférences invitées</td>
<td>79</td>
<td>73</td>
<td>89</td>
<td>115</td>
<td>119</td>
<td>37</td>
<td>487</td>
<td>7,6</td>
<td></td>
</tr>
</tbody>
</table>

D 1.1.d. Publications majeures

D 1.1.e. Documents majeurs

D 1.1.f. Faits illustrant le rayonnement ou l’attractivité académiques

2) Soutenance de la première thèse en cotutelle entre l’Université Nationale de Taiwan (NTU) et l’ENS Cachan, YP Liu, octobre 2009 « Design & implementation of piezoelectric technology based power devices ».

3) Lauréat du “2009 EPE Outstanding Achievement Award”, lors du congrès EPE, Barcelone, Jean-Paul Louis, 2009

4) Prix des meilleurs papiers « jeunes chercheurs » à la conférence CEM 2010 : Denis Labrousse, Fabien Adam.

5) Prix de la meilleure thèse du GDR SEEDS/club EEA, Vincent Debusschère, 2010

D 1.1.g. Faits illustrant les interactions de l’entité avec son environnement socio-économique ou culturel

D 1.1.h. Principales contributions de l’entité à des actions de formation

<table>
<thead>
<tr>
<th>Nom du Master</th>
<th>Portage</th>
<th>Etablissement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master GEII : Génie Electrique et Informatique Industrielle</td>
<td>Oui</td>
<td>UCP</td>
<td>Le Master GEII est un Master professionnel en apprentissage de l’Université de Cergy-Pontoise (UCP) formant des cadres techniques de haut niveau (bac + 5) destinés à occuper dans le monde industriel des postes d’ingénieurs dans les secteurs de l’électrotechnique, de l’électronique, de l’automatique et de l’informatique industrielle.</td>
</tr>
<tr>
<td>Master Bâtiment Intelligent</td>
<td>Oui</td>
<td>UCP</td>
<td>Le master Bâtiment Intelligent est destinée à former des cadres généralistes à un niveau Bac+5 en les dotant de compétences transversales et complémentaires pour répondre aux missions innovantes (en phase de conception, de réalisation, de maintenance et de réhabilitation) liées à la maîtrise de l’impact environnemental et du coût énergétique du bâtiment à usage industriel, tertiaire ou d’habitation.</td>
</tr>
<tr>
<td>Master 2 PIE : Physique et Ingénierie de l’Energie</td>
<td>Oui</td>
<td>ENSC-UP Sud-Supélec</td>
<td>Le Master PIE a pour objectif de donner une formation pluridisciplinaire bivalente dans le domaine de la production d’énergie et des énergies renouvelables, à la fois en physique (nucléaire, plasmas, fusion, neutronique, fission, énergies nouvelles et ioniques) et en génie de l’énergie électrique (production, transport, distribution, stockage, matériaux, systèmes de puissance et réseaux).</td>
</tr>
<tr>
<td>Master 2 VTD : Véhicules et Transports Durables</td>
<td>Oui</td>
<td>ENSC-IFP School</td>
<td>Le Master Véhicules et Transports Durables, spécialité Electrification and Propulsion Automobile a été créé en 2010 par consortium de grandes écoles composé de l’ENS Cachan, de l’IFP school, de Supélec et de Centrale Paris. C’est le premier master français consacré à ce domaine</td>
</tr>
<tr>
<td>Master Mécatronique et sciences pour l’Ingénieur</td>
<td>Non</td>
<td>UR1-ENSC</td>
<td>L’objectif de la formation est de permettre une approche pluridisciplinaire pour résoudre les problèmes posés par la productique moderne.</td>
</tr>
</tbody>
</table>
D 1.2. Présentation synthétique du pôle SIAME

Unité de recherche : SATIE

Vague E : campagne d’évaluation 2013-2014

Titre du pôle : Systèmes d'Information et d’Analyse Multi-Echelles (SIAME)

Intitulé de l’unité : Systèmes et Applications des Technologies de l’information et de l’Énergie (SATIE)

Nom du directeur de l’unité : Pascal Larzabal

Nom du responsable du pôle SIAME : Stéphane Serfaty

D 1.2.a. Effectifs de l’entité.

a. Personnels permanents et contractuels en 2008

- 20 EC; 2 CR CNRS; 1 IR; +8 BIATS mutualisés; 21 doctorants et post-doc.

b. Personnels ayant quitté

- 2 CR CNRS (2009-Rétraite, 2010-mutation); 2 MCF (Promotions 2011, 2012); 1 MCF (mutation – 2012); 32 doctorants (1088 mois cumulés).

c. Nombre de recrutements

- **Entrants :** 1 CR CNRS (mutation 2009, Rennes I); 4 PU et 3 MCF (intégration 2010, UCP); 1 IE (2013, UCP).

- **Recrutements :** 1 MCF (2009, doct., ENSC); 2 MCF (2011, doct., UPMC et Toulouse 1); 1 PU (2013, MCF, UPSud).

D 1.2.b. Production scientifique

D 1.2.c. Bilan quantitatif des publications de l’entité.

<table>
<thead>
<tr>
<th>Productions scientifiques</th>
<th>bilan période</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revues à comité de lecture (dont 164 internationales)</td>
<td>188</td>
</tr>
<tr>
<td>Communications dans les colloques avec actes et comité de lecture (dont 192 internationales)</td>
<td>230</td>
</tr>
<tr>
<td>Brevets</td>
<td>10</td>
</tr>
<tr>
<td>Ouvrages, contributions ou chapitres d’ouvrage</td>
<td>8</td>
</tr>
<tr>
<td>Autres publications (y compris vulgarisation et diffusion des sciences)</td>
<td>17</td>
</tr>
<tr>
<td>Total général</td>
<td>453</td>
</tr>
</tbody>
</table>

D 1.2.d. Publications majeures

Partie D : Annexes de SATIE

D 1.2.e. Documents majeurs

D 1.2.f. Faits illustrant le rayonnement ou l’attractivité académiques

1. Création du Collège Universitaire Franco-Brésilien Santos Dumont destiné à développer et à valoriser les collaborations académiques et de recherche entre la France et le Brésil.

D 1.2.g. Faits illustrant les interactions avec l’environnement socio-économique ou culturel

4. Création d’un open-Lab dédié aux cosmétiques (PFMI Cosmétomique - 2013). Le laboratoire SATIE a initié au sein de l’UCP, avec la collaboration du pôle Cosmetic Valley, du synchrotron SOLEIL (totalité des lignes), et de BIO-EC une société spécialisée dans le test et l'objectivation des produits cosmétiques, un Living-Lab dédié à la mise au point de nouveaux outils instrumentaux et au transfert de ces technologies.

D 1.2.h. Contributions à des actions de formation

1. Intervention et participation à l'organisation de nombreux masters co-habilités par les tutelles (IST, ETM, GEII, BI, CMI, Mécatronique …),

2. Responsabilités de composantes d’université (UFR Paris X, IUT UCP).

3. Responsabilités de spécialités pour les masters "Génie Electrique et Informatique Industrielle", et Master "Bâtiment Intelligent".

4. Participation à la mise place de Cursus Master Ingénierie dans le cadre du réseau Figure.

D 2. Annexe 2 : Lettre de mission contractuelle

Néant

D 3. Annexe 3 : Équipements lourds

Plusieurs plateformes expérimentales spécialisées sont exploitées par les différents groupes. Ces plateformes contiennent du matériel et des instruments de mesure spécifiques qui ne peuvent pas être qualifiés d’équipements lourds.

D 4. Annexe 4 : organigramme de SATIE
D 5. Annexe 5 : Règlement intérieur de SATIE

I - Préambule

1 - Objet et champ d’application

Ce règlement fixe les règles de discipline intérieure en rappelant les garanties dont leur application est entourée et précise certaines dispositions d’hygiène et de sécurité.

Toute personne déjà employée ou nouvellement engagée, quel que soit son statut, est considérée comme l’ayant accepté dans toutes ses dispositions. Un exemplaire est remis à chacun des personnels du laboratoire.

L’aménagement et la réduction du temps de travail répondent aux principes et recommandations :

- du décret n° 84-972 du 26 octobre 1984 relatif aux congés annuels des fonctionnaires de l’État ;
- de l’arrêté ministériel du 31 août 2001 fixant les mesures applicables aux agents relevant du ministère de la recherche ;
- de la circulaire n° 2002-007 du 21 janvier 2002 relative aux obligations de service des personnels IATOS et d’encadrement exerçant dans les services déconcentrés ou Établissements relevant du Ministère de l’Éducation Nationale.

Les choix d’organisation, qui ont été retenus dans le cadre de l’aménagement et la réduction du temps de travail et sur les horaires variables, reposent sur un système souple et la responsabilisation individuelle de chaque personnel dans la gestion de ses horaires de travail.

Le laboratoire « Systèmes et applications des technologies de l’information et de l’énergie » (ci-après désigné par SATIE est une UMR abrégée dans les locaux de Paris, de Bruz, Cachan et Neuville, dont les tutelles sont le :

- Conservation National des Arts et Métiers (Cnam)
- CNRS
- Ecole Normale Supérieure de Cachan (ENS CACHAN)
- Université de Cergy-Pontoise (UCP).

Le présent règlement intérieur a été soumis à l’avis :

- des Conseils Scientifiques du CNAM (date : …), CNRS (date : …), ENS CACHAN (date : …) et de l’UCP (date : …),
- du Conseil de laboratoire réuni le 3 octobre 2013,
- du Conseil d’Administration du CNAM (date : …), CNRS (date : …), ENS CACHAN (date : …) et de l’UCP (date : …),

Il est conforme à la réglementation en vigueur dans les établissements de tutelle du laboratoire.

Il est complémentaire des règlements intérieurs :

- de chacune des tutelles,
- des Conseils Scientifiques des tutelles.

Toute modification sera soumise à l’avis du Conseil de laboratoire et des Conseils Scientifiques et Conseil d’Administration de chacune des tutelles concernées ; elle devra faire l’objet d’un avenant.
Il s’applique à l’ensemble du personnel de laboratoire affecté à SATIE y compris les agents contractuels et les stagiaires.

Toute évolution de la réglementation applicable dans les établissements de tutelle de l’unité s’applique de fait au laboratoire.

Il est précisé que le terme directeur utilisé dans le présent règlement intérieur est générique et représente à la fois le terme de directeur ou de directrice.

Article 1 - Missions du laboratoire

Le laboratoire SATIE a pour vocation d’organiser et de promouvoir la recherche dans ses thématiques. Il a pour missions notamment :

- la participation active à la recherche fondamentale et appliquée ;
- l’accueil et l’encadrement de stagiaires, de doctorants, chercheurs, d’enseignants-chercheurs et assimilés ;
- la réalisation de projets de recherche, d’études, d’expertises, de prestations et de formation spécifiques au niveau régional, national ou international ;
- la valorisation de la recherche ;
- la diffusion des savoirs.

Article 2 - Composition du laboratoire

Outre les personnels accueillis, le laboratoire comprend différentes catégories de membres qui sont définies ci-après :

- des membres permanents,
- des membres temporaires,
- des membres associés

L’annexe 1 et ses avenants précisent la liste des personnes du laboratoire, arrêtée annuellement par les Présidents ou directeurs des différentes tutelles.

2.1 Les membres permanents

Les membres permanents sont :

- les enseignants-chercheurs titulaires et assimilés attachés au laboratoire à titre principal et justifiant d’une activité et/ou d’une production scientifique dans les thématiques du laboratoire,
- les chercheurs titulaires appartenant à un organisme de recherche et attachés au laboratoire et justifiant d’une activité et/ou d’une production scientifique dans les thématiques du laboratoire,
- les enseignants titulaires docteurs appartenant à un autre ordre d’enseignement et rattachés au laboratoire à titre principal et justifiant d’une activité et/ou d’une production scientifique dans les thématiques du laboratoire,
- les personnels BIATSS (bibliothèques, ingénieurs, administratifs, techniciens, de service et de santé) et ITA affectés au laboratoire.

L’appartenance des membres permanents au laboratoire est réalisée lors de la validation du projet scientifique ou ultérieurement par décision du directeur de laboratoire après avis du Conseil de laboratoire, selon les critères définis précédemment. L’appartenance au laboratoire en tant que membre permanent, est incompatible avec l’appartenance à une autre unité de recherche en tant que membre permanent également.

2.2 Les membres temporaires

Les membres temporaires sont :

- les autres enseignants-chercheurs ou chercheurs docteurs non titulaires demandant leur rattachement et justifiant d’une activité et/ou d’une production scientifique dans les thématiques du laboratoire,
- les professeurs émérites,
les ATER,
- les chercheurs contractuels effectuant leurs activités de recherche au laboratoire,
- les doctorants inscrits sous la direction ou la co-direction d’un membre permanent du laboratoire,
- les post-doctorants engagés sous la responsabilité d’un membre permanent du laboratoire,
- les personnels administratifs contractuels affectés au laboratoire.

2.3 Les membres associés

Les membres associés participent à la vie du laboratoire.

Le rattachement en qualité de membre associé est décidé par le Conseil de laboratoire.

Les membres associés sont :
- les enseignants chercheurs titulaires et assimilés membres permanents d’un autre laboratoire,
- les autres enseignants-chercheurs et chercheurs, titulaires ou non titulaires ne justifiant pas d’une activité régulière dans les missions du laboratoire,
- les autres enseignants non docteurs justifiant d’une activité et/ou d’une production scientifique dans les thématiques du laboratoire,
- les personnalités extérieures dont la qualité scientifique est reconnue,
- les personnels d’autres établissements en délégation,
- les « chercheurs bénévoles » ayant fait l’objet d’une convention d’accueil avec l’université.

Le Conseil scientifique de chacune des tutelles peut être saisi des refus de rattachement prononcés par le Conseil de laboratoire.

Le nombre des membres associés fixé par le Conseil de laboratoire ne doit pas dépasser le nombre des membres permanents.

2.4 Les personnes accueillies

Les personnes accueillies ponctuellement sont :
- les stagiaires,
- les professeurs et chercheurs invités par le laboratoire officiellement.

2.5 Obligations des membres et personnes accueillies au sein du laboratoire

Le présent règlement s’applique à l’ensemble des différentes catégories de membres et aux personnes accueillies au sein du laboratoire qui devront respecter l’ensemble des dispositifs en vigueur au sein du laboratoire et notamment les règles de confidentialité, publications, horaires, sécurité…

Chaque membre du laboratoire s’engage à :
- mener à bien ses activités de recherche décrites dans le projet scientifique du laboratoire,
- participer aux activités communes du laboratoire,
- favoriser les échanges scientifiques et les collaborations internes et externes,
- participer à la direction, à l’encadrement des thèses ou des stages,
- promouvoir l’image du laboratoire à l’extérieur de l’université par la diffusion des résultats de ses travaux de recherche dans le respect des obligations de confidentialité.

Les membres temporaires, les membres associés et les personnes accueillies ont l’obligation de signer un « engagement personnel de confidentialité » avant toute participation à une quelconque activité du laboratoire et qui lui permet d’assister notamment les réunions de travail de son groupe de rattachement.
2.6 Accueil des nouveaux arrivants au laboratoire
Les nouveaux membres du laboratoire et les stagiaires sont accueillis par le laboratoire qui assure les conditions de leur accueil, les renseigne (logistique, établissement d’un badge …) et leur assure une formation à la santé et sécurité au travail en son sein.
Un exemplaire du présent règlement intérieur doit être transmis à chaque nouvel arrivant au laboratoire.

Article 3 - Instances et organisation du laboratoire

Le fonctionnement du laboratoire repose sur les Conseils suivants à savoir :

- une assemblée générale,
- un Conseil de laboratoire,

et le cas échéant :

- un comité scientifique,
- un Conseil de direction.

Le laboratoire est dirigé par un directeur, assisté par deux responsables de pôle.
L’annexe 2 précise les membres de chaque instance du laboratoire.

3.1 L’assemblée générale du laboratoire

3.1.1 Composition de l’assemblée générale du laboratoire

L’assemblée générale est composée de tous les membres de l’unité de recherche (permanents, temporaires et associés). Elle comprend tous les personnels du laboratoire.

Les présidents et directeurs des différentes tutelles sont invités à l’assemblée générale.
Le directeur du laboratoire peut inviter toute personne qu’il jugera utile.

3.1.2 Compétences de l’assemblée générale du laboratoire

L’assemblée générale est composée de tous les membres de l’unité de recherche (permanents, temporaires et associés). Elle comprend tous les personnels du laboratoire.

Les présidents et directeurs des différentes tutelles sont invités à l’assemblée générale.
Le directeur du laboratoire peut inviter toute personne qu’il jugera utile.

3.1.3 Fonctionnement de l’assemblée générale du laboratoire

L’assemblée générale entend le rapport d’activités annuel de l’unité de recherche, les projets des responsables de pôles ou de groupes, les évolutions de l’unité et plus généralement toute information concernant l’évolution de la recherche et de son environnement.

L’assemblée générale peut formuler des recommandations qui seront soumises pour avis au Conseil de laboratoire.

3.2 Le Conseil de laboratoire

3.2.1 Composition du Conseil de laboratoire

Le Conseil de laboratoire se compose de 17 membres :

- 10 membres permanents élus, (5 binômes titulaire-suppléant), (dont 8 membres élus parmi les enseignants-chercheurs titulaires et assimilés attachés au laboratoire à titre principal et 2 membres élus parmi les personnels BIATSS et ITA affectés au laboratoire)
- 2 membres temporaires élus (1 binôme titulaire-suppléant), (élus par leurs pairs dans un collège unique : doctorant, ATER et post doc)
- 4 membres nommés, proposés par le directeur du laboratoire parmi les membres permanents, temporaires et associés (2 enseignants-chercheurs titulaires et assimilés, 1 personnel BIATSS ou ITA, 1 doctorant)
Le directeur du laboratoire est membre de droit.

La durée du mandat est la durée du contrat quinquennal. Les élections ont lieu au suffrage direct. Tout électeur est éligible.

Les membres sont rééligibles. Un membre de droit ou élu qui quitte le laboratoire ne fait plus partie du Conseil et une élection partielle devra être organisée. Il sera remplacé par voie d’élection.

La durée du mandat peut être exceptionnellement modifiée, notamment dans le cas du changement de périmètre de l’unité de recherche.

Le directeur organise les élections du Conseil de laboratoire.

Le directeur du laboratoire peut inviter toute personne qu’il jugera utile.

3.2.2 Compétences du Conseil de laboratoire

Le Conseil de laboratoire a un rôle consultatif. Il émet un avis sur toutes les questions relatives à la politique scientifique, la gestion des ressources, l’organisation, la santé et sécurité et le fonctionnement de l’unité.

Les membres du Conseil de laboratoire votent sur les avis à émettre.

Le Conseil de laboratoire est consulté par le directeur de l’Unité notamment sur :

- Le programme, la coordination des recherches et la composition des groupes,
- Les moyens budgétaires à demander par l’unité et la répartition de ceux qui lui sont alloués,
- La politique des contrats de recherche concernant l’unité,
- La politique de transfert de technologie et la diffusion de l’information scientifique de l’unité,
- La gestion des ressources humaines (en particulier l'avis du Conseil de laboratoire qui est pris avant l'établissement du rapport de stage des personnels recrutés dans les corps d'ingénieurs, de personnels techniques et d'administration de la recherche du CNRS),
- La politique de formation par la recherche,
- Les conséquences à tirer de l’avis formulé par la ou les sections du comité national de la recherche scientifique dont relève l’unité,
- Le document unique d’évaluation des risques et sur le plan d’action associé,
- Le programme de formation des personnels en cours et pour l’année à venir,
- Toutes mesures relatives à l’organisation et au fonctionnement de l’unité et susceptibles d’avoir une incidence sur la situation et la santé, sécurité et conditions de travail du personnel,
- Le développement équilibré des axes de recherche, notamment par le recrutement des enseignants-chercheurs et le partage des ressources,
- L’accueil des chercheurs et enseignants-chercheurs d’équipes provenant d’établissements extérieurs ou des membres associés,
- L’introduction de nouveaux objectifs et thématiques de recherche en cohérence avec le projet scientifique du laboratoire.

Le Conseil de laboratoire reçoit communication :

- du relevé des propositions du comité scientifique du laboratoire à l'exclusion de la relation des débats,
- des documents, décrits à l'article 7 de la décision du 17 septembre 1990, préparés par le directeur de l'unité à l'intention du Conseil de laboratoire (CNRS).

Lorsque l'Unité vient à être évaluée par une ou plusieurs sections du CNRS, le Conseil de laboratoire joint au dossier un rapport pouvant comporter ses observations à l'adresse de la ou (des) section(s).

Le Conseil de laboratoire est tenu informé par le directeur de l'Unité de la politique du ou des instituts du CNRS et de son incidence sur le développement de l'unité.
3.2.3 Fonctionnement du Conseil de laboratoire

Le Conseil de laboratoire est présidé par le directeur de l'unité.

Il se réunit au moins quatre (4) fois par an. Il est convoqué par le directeur du laboratoire soit à l’initiative de celui-ci, soit à la demande du tiers de ses membres. La convocation est transmise par courrier électronique et/ou par lettre simple, 15 jours avant la date du Conseil et un exemplaire doit être affiché dans les locaux de l’unité, au plus tard huit jours avant la date de la réunion.

Le Conseil peut entendre, sur invitation de son directeur, toute personne participant aux travaux de l’unité, ou appelée à titre d’expert sur un point de l’ordre du jour.

Le directeur arrête l’ordre du jour de chaque séance ; celui-ci comporte toute question relevant de la compétence du Conseil de laboratoire, inscrite à l’initiative de son directeur ou demandée par plus du tiers des membres de ce Conseil.

Le Conseil de laboratoire ne peut délibérer que si la moitié des membres du Conseil sont présents ou représentés.

Un membre du Conseil de laboratoire peut donner pouvoir à un autre membre de la même catégorie pour le représenter et voter. Chaque membre ne peut détenir plus de un pouvoir. Les pouvoirs sont rédigés par écrit et transmis au directeur avant le début de la séance. Les votes ont lieu à bulletin secret ou à main levée suivant la décision du Conseil. La majorité absolue est nécessaire pour valider une décision.

En cas d’égalité des voix, la voix du directeur comptera double.

Le directeur établit et assure la diffusion d’un relevé de conclusions de chacune des séances.

3.3 Le comité scientifique du laboratoire

3.3.1 Composition du comité scientifique du laboratoire

Le comité scientifique est un organe consultatif. Il est composé :

- du directeur de l’unité,
- de deux responsables de pôle
- de deux personnes de chaque groupe désignées par ce dernier.

Le directeur peut inviter toute personne extérieure au comité pour éclairer les débats de celui-ci.

3.3.2 Compétences du comité scientifique du laboratoire

Le comité scientifique est consulté sur toute question relative à la politique scientifique de l'unité, en particulier :

- la structuration et composition des groupes, en particulier la restructuration et l'émergence de nouveaux groupes,
- la politique des contrats de recherche et la valorisation des recherches,
- la politique de recrutement, l'association de membres,
- la politique de formation par la recherche.

3.3.3 Fonctionnement du comité scientifique du laboratoire

Le comité scientifique est présidé par le directeur du laboratoire.

Le comité scientifique se réunit au moins deux fois par an, sur convocation du directeur. La convocation est nominative et envoyée par courrier électronique et/ou lettre simple à chaque membre du comité scientifique permanent, 15 jours au moins avant la tenue de l’assemblée.

Ses débats ne sont pas publics mais donnent lieu à un contre-rendu diffusé à l’ensemble des membres de l’unité.
3.4 Le Conseil de direction du laboratoire

3.4.1 Composition du Conseil de direction du laboratoire

Il est composé :

- du directeur,
- des deux responsables de pôle.

Le directeur peut inviter toute personne extérieure au Conseil pour éclairer les débats de celui-ci.

3.4.2 Compétences du Conseil de direction du laboratoire

Le Conseil de direction est compétent pour débattre sur tout problème concernant le fonctionnement courant de l'unité.

3.4.3 Fonctionnement du Conseil de direction du laboratoire

Le Conseil de direction est présidé par le directeur du laboratoire ou à défaut les deux responsables de pôle.

Le Conseil de direction se réunit régulièrement, sur convocation de son directeur. La convocation est nominative et envoyée par courrier électronique et/ou par lettre simple à chaque membre du Conseil scientifique permanent, 8 jours au moins avant la tenue du Conseil, sauf cas exceptionnel. Le directeur arrête l'ordre du jour de chaque Conseil.

Le Conseil de direction du laboratoire ne peut délibérer que si la moitié des membres du Conseil sont présents. Aucune procuration n'est possible. La majorité absolue est nécessaire pour valider une décision.

En cas d'égalité des voix, la voix du directeur comptera double.

Ses délibérations ne sont pas publiques mais donnent lieu à un relevé de décisions diffusé à l'ensemble des membres du Conseil de direction.

3.5 Les responsables de pôle

3.5.1 Désignation des deux responsables de pôle

Les responsables de pôle sont élus par le Conseil du laboratoire.

Ces derniers doivent faire partie des membres permanents, enseignants-chercheurs ou chercheurs du laboratoire.

Les candidats aux postes de responsables de pôle doivent déposer leur candidature au moins huit jours avant l'élection. Le vote a lieu à bulletins secrets. Pour être élu, les candidats doivent obtenir la majorité absolue des voix des membres du Conseil de laboratoire présents ou représentés (une seule procuration par membre présent).

Le directeur du laboratoire organise l'élection des responsables du pôle.

3.5.2 Compétences des responsables de pôle

3.6 Le directeur du laboratoire

3.6.1 Désignation du directeur de laboratoire

Le directeur du laboratoire est proposé aux instances de tutelle suite au vote du Conseil de laboratoire lors de la constitution du laboratoire, puis à chaque renouvellement dans le cadre d’une contractualisation ou du départ du directeur. Il est membre permanent, enseignants-chercheur ou chercheur du laboratoire.

Pour les UMR, conformément à l'article 18 du décret du 24 novembre 1982 modifié, le directeur du laboratoire est nommé par le directeur général du CNRS après avoir recueilli les avis du Conseil de laboratoire.
La proposition du laboratoire est obtenue par un vote à bulletin secret, à la majorité absolue, par l’ensemble des membres du Conseil de laboratoire.

3.6.2 Compétences du directeur du laboratoire

Les fonctions de directeur relèvent des textes des instances de tutelle selon le statut officiel du laboratoire.

Le directeur du laboratoire a notamment pour fonction de :

- veiller à ce que le projet scientifique du laboratoire soit mené dans de bonnes conditions,
- consulter les Conseils du laboratoire,
- assurer le bon fonctionnement du laboratoire et de ses Conseils en accord avec le règlement intérieur,
- veiller à la santé et sécurité au travail des membres du laboratoire.

Article 4 - Temps de travail et aménagement du temps de travail

4.1 Durée du travail

Pour les enseignants-chercheurs :

Pour les personnels BIATSS du CNAM :

Pour les personnels du CNRS :

La durée annuelle de travail est de 1 607 heures.

Les modalités de mise en œuvre dans l’Unité prennent en compte les dispositions figurant dans le décret du 25/08/00 modifié par le décret 2004-1307 du 27 novembre 2004 ainsi que celles énoncées d’une part dans l’arrêté du 31/08/01 et d’autre part dans le cadrage national du CNRS.

Pour les personnels BIATSS de l’ENS :

La durée annuelle de travail et les modalités de mise en œuvre sont définies dans le règlement intérieur de l’ENS (circulaire en vigueur relative au fonctionnement administratif des services de la tutelle).

Pour les personnels BIATSS de l’UCP :

La durée annuelle de travail et les modalités de mise en œuvre sont définies dans la circulaire annuelle en vigueur sur le temps de travail de la direction des ressources humaines de l’UCP.

Pour les personnels sous contrat de travail à l’UCP et les doctorants :

4.2 Horaires

La durée hebdomadaire du travail effectif pour chaque agent de l’Unité travaillant à temps plein est fixée sur une base de cinq jours. Elle est calculée en fonction des dispositions réglementaires propres à chaque employeur.

Pour les personnels BIATSS titulaires et contractuels, les modalités de mise en œuvre sont définies dans la circulaire annuelle en vigueur sur le temps de travail de la direction des ressources humaines des tutelles.

Pour les personnels BIATSS du CNAM, de l’ENS et de l’UCP, les modalités de mise en œuvre sont définies dans le règlement intérieur des tutelles (circulaire en vigueur relative au fonctionnement administratif des services des tutelles).

Pour le personnel CNRS, les modalités de mise en œuvre sont définies dans la circulaire annuelle sur le temps de travail (décision du CNRS no 010055DRH du 23 octobre 2001). La durée hebdomadaire de travail effectif est égale à 38h30 pour l’ensemble des personnels titulaires et non titulaires affectés dans le laboratoire. Le temps de travail hebdomadaire des agents travaillant à temps partiel est calculé au prorata de la quotité du temps travaillé.
4.3 Congés

Pour les personnels BIATSS titulaires et contractuels :

La durée annuelle des congés et les modalités de mise en œuvre sont définies dans la circulaire annuelle en vigueur sur le temps de travail de la direction des ressources humaines des tutelles.

Pour les personnels BIATSS du CNAM, de l’ENS et de l’UCP :

La durée annuelle des congés et les modalités de mise en œuvre sont définies dans le règlement intérieur des tutelles (circulaire en vigueur relative au fonctionnement administratif des services des tutelles).

Pour le personnel CNRS :

La durée annuelle des congés et les modalités de mise en œuvre sont définies dans la circulaire annuelle sur le temps de travail (décision du CNRS no 010055DRH du 23 octobre 2001)

Le suivi des congés (annuels et RTT) est réalisé dans l’Unité sous la responsabilité du directeur, et transmis à l’employeur (notamment pour la mise en œuvre du Compte Épargne temps CET).

4.4 Absences

Les personnels doivent informer par tous moyens et de préférence par mail le directeur du laboratoire et le secrétariat du site d’accueil de toute absence.

La notion d’absence du service ne concerne que les absences pendant les plages horaires fixes.

Toute absence liée à un cas de force majeure ou de contrainte majeure (indépendante de la volonté de l’agent), fera l’objet d’une demande d’autorisation d’absence motivée, soumise à l’appréciation du supérieur hiérarchique.

L’absence autorisée par le supérieur hiérarchique fera l’objet d’une feuille de régularisation, signée par le supérieur hiérarchique et transmise au secrétariat. Selon l’accord convenu entre les intéressés, le temps non travaillé sera récupéré ou débité des jours congés de l’agent.

Il appartient au directeur dans le cadre de ses responsabilités relatives au bon fonctionnement du laboratoire, de veiller au respect du règlement portant sur les horaires.

4.4.1 Absence pour raison médicale

Toute indisponibilité consécutive à la maladie doit, sauf cas de force majeure dûment être justifiée et signalée au responsable de l’Unité dans les 24 heures. Sous les 48 heures qui suivent l’arrêt de travail le salarié doit produire un certificat médical indiquant la durée prévisible de l’indisponibilité.

Pour tout renseignement concernant les dispositions et durées relatives aux congés maladie, les personnels doivent s’adresser à la DRH de leur organisme de tutelle.

Tout accident corporel survenant dans le cadre de l’activité professionnelle doit être immédiatement déclaré auprès de l’Unité.

4.4.2 Autorisations supplémentaires d’absence

Pour tout renseignement concernant les dispositions relatives aux autorisations d’absence telles que : congé pour naissance ou adoption, soins aux enfants malades, passage d’un concours externe, recherche d’un nouvel emploi durant un préavis, examen dans le cadre de la médecine préventive, …, les personnels doivent s’adresser au service du personnel de leur organisme de tutelle.

4.5 Compte épargne temps (CET) pour les personnels

Pour les BIATSS de l’UCP :

La possibilité d’ouvrir et alimenter un CET, est donnée selon les dispositions précisées dans la circulaire annuelle de la DRH sur le temps de travail et la circulaire de la DRH sur les comptes épargne-temps.

Pour les BIATSS de l’ENS :

La possibilité d’ouvrir et alimenter un CET est donnée selon les dispositions précisées dans la note de cadrage relative au temps de travail.

Pour les BIATSS du CNAM :
La possibilité d’ouvrir et alimenter un CET est donnée les dispositions précisées dans la note de la DRH relative au régime de travail des personnels BIATSS.

Pour le personnel CNRS :

La possibilité d’ouvrir et alimenter un CET, est donnée selon les dispositions précisées dans le décret n° 2009-1065 du 28/08/2009.

4.5 Compte épargne recherche (CER)

Pour les enseignants-chercheurs de l’UCP, il est possible d’avoir un compte épargne recherche suivant la circulaire de la DRH de l’UCP.

4.6 Plages fixes et plages mobiles

Définition

- Les plages fixes recouvrent les heures pendant lesquelles tous les agents doivent être simultanément présents dans le laboratoire.
- En application de l’article 6 du décret du 25 août 2000 susvisé, leur durée ne peut être inférieure à 4 heures.
- Les plages mobiles se situent, avant, entre et après les plages fixes. Durant ces plages mobiles, les agents peuvent moduler leurs heures d’arrivée et de départ selon un planning ou un calendrier défini avec le directeur d’unité.
- Le déjeuner (pause méridienne) est pris au cours de la plage mobile du milieu de journée.

Organisation

<table>
<thead>
<tr>
<th>Plages fixes</th>
<th>Plages mobiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 heures à 12 heures</td>
<td>7 heures 30 à 10 heures</td>
</tr>
<tr>
<td>14 heures à 16 heures</td>
<td>12 heures à 14 heures</td>
</tr>
<tr>
<td></td>
<td>16 heures à 19 heures 30</td>
</tr>
</tbody>
</table>

Article 5 - Missions

Tout membre de l’unité se déplaçant pour l’exercice de ses fonctions doit être en possession d’un ordre de mission établi préalablement au déroulement de la mission. Ce document est obligatoire du point de vue administratif et juridique ; il assure la couverture de l’agent au regard de la réglementation sur les accidents de service.

Le membre de l’unité amené à se rendre directement de son domicile sur un lieu de travail occasionnel sans passer par sa résidence administrative habituelle, est couvert en cas d’accident du travail sous réserve de remplir les deux conditions suivantes :

- être en possession d’un ordre de mission
- avoir une autorisation du directeur de laboratoire pour l’utilisation d'un véhicule administratif ou pour l’usage de son véhicule personnel.

Article 6 - Sécurité et Santé au travail

6.1 Accès aux locaux

Les locaux de SATIE sur les différents sites des tutelles ne sont accessibles au personnel que pour l’exercice de ses fonctions.

Le personnel n’a aucun droit d’entrer ou de se maintenir sur les lieux de travail pour une autre cause, sauf s’il peut se prévaloir d’une autorisation délivrée par une personne compétente et habilitée.

L’utilisation des parkings des différents sites est concédée au personnel et aux visiteurs autorisés. Les véhicules doivent obligatoirement être garés dans les emplacements prévus à cet effet ; il est strictement interdit de se garer sur les trottoirs et les aires de circulation. Les places de parking aménagées pour les personnes à mobilité réduite leur sont exclusivement réservées.
Tout personnel recruté se voit attribué un badge nominatif dont la présentation lui permettra d’avoir accès à son lieu de travail. Cette carte est d’usage strictement personnel et devra être restituée en cas de départ, avant ce départ.

Il est interdit au personnel d’introduire ou de faire introduire dans le laboratoire et sur le campus, des personnes étrangères à ceux-ci, sans raison de service, sauf dispositions légales particulières ou autorisation spécifique.

Pour des raisons impérieuses de sécurité, le délégué régional, les présidents ou directeurs des tutelles ou leurs représentants, pourront faire procéder à des vérifications d’objets dont le personnel est porteur ou transporteur, tant à l’entrée qu’à la sortie.

Les locaux de SATIE sur le site des différentes tutelles sont accessibles toute l’année (y compris pendant les vacances universitaires) du lundi au vendredi de 8h00 à 20h00 sauf les jours fériés. En dehors de ces horaires, les bâtiments sont sous surveillance électronique et ne sont accessibles qu’aux personnes munies d’un badge et sous certaines conditions d’accès.

L’accès aux locaux en dehors des horaires définis précédemment doit être expressément et nommément autorisé par le directeur de l’Unité.

Les conditions d’accès à chaque établissement sont consultables sur le site intranet de l’université.

Le travail isolé est interdit.

6.2 Sécurité au travail (cf Annexe 3)

Il incombe au directeur du laboratoire de veiller à la sécurité et à la protection des agents placés sous son autorité et d’assurer la sauvegarde des biens dont il dispose. Cependant chacun doit se préoccuper de sa propre sécurité et de celle des autres.

Le directeur de l’unité nomme, après avis du Conseil de laboratoire, un agent chargé de la mise en œuvre des règles d’hygiène et de sécurité (ACMO ou assistant de prévention d’une des tutelles), placé sous son autorité qui l’assistera et le conseillera dans le domaine de la prévention et de la sécurité.

L’ACMO ou assistant de prévention travaille en relation avec la DHSE (direction hygiène, sécurité et environnement) des tutelles en charge de la mise en œuvre de la politique de prévention des tutelles.

6.2.1 L’ACMO (ou assistant prévention)

Le rôle de l’ACMO ou assistant de prévention est détaillé en annexe 4 du présent règlement intérieur ainsi que le nom de la personne ayant cette charge au sein du laboratoire.

L’ACMO participe de droit au Conseil de laboratoire lorsque les questions relatives à l’hygiène et à la sécurité y sont abordées. Il coordonne la réalisation du document unique d’évaluation des risques et la mise en œuvre du programme annuel d’actions de prévention.

6.2.2 Conditions d’hygiène et de sécurité

Les questions d’hygiène et de sécurité de l’unité seront traitées au sein du Conseil de laboratoire en liaison avec les CHSCT des sites d’accueil.

6.2.2.1 L’organisation des secours

Les dispositions à prendre en cas d’incendie font l’objet de documents affichés dans les couloirs des locaux affectés à l’unité dans chacun des sites d’accueil. Ces documents doivent être en accord avec la réglementation de chacun des sites d’accueil (CNAM/CNRS/ENS/UCP).

2 personnels au moins seront chargés d’assurer l’évacuation du laboratoire en cas d’urgence.

10% des personnels du laboratoire (à minima 2 personnes) seront formés aux premiers secours (SST) pour intervenir en cas d’accident ou de malaise.

6.2.2.2 Le registre santé et sécurité au travail

Il est mis à la disposition du personnel un registre afin de consigner toutes les observations et suggestions relatives à la prévention des risques et à l’amélioration des conditions de travail.

Ce registre est disponible auprès du secrétariat du laboratoire.
6.2.2.3 Le registre de danger grave et imminent

Il est mis à la disposition du personnel une annexe du registre de danger grave et imminent afin de signaler toute situation de travail dont il a un motif raisonnable de penser qu'elle présente un danger grave et imminent pour sa vie ou sa santé ainsi que de toute défectuosité qu'il constate dans les systèmes de protection.

Ce registre est disponible auprès du secrétariat du laboratoire.

6.2.2.4 La formation à la sécurité

Le directeur d’unité doit s’assurer que les agents placés sous son autorité, notamment les nouveaux entrants, ont bien reçu une formation à la sécurité et, le cas échéant, une formation spécifique adaptée à leur poste de travail.

6.2.2.5 Mesures spécifiques en fonction de l’activité

La gestion du travailleur isolé, les mesures spécifiques en fonction de l’activité du laboratoire et le suivi médical des agents relève directement des établissements employeurs et figurent sur le site intranet des tutelles.

6.3 Discipline et comportement dans l’unité

Tout membre du laboratoire ou toute personne accueillie au sein du laboratoire est tenu de respecter les règles d’hygiène et de sécurité du site d’accueil (CNAM/CNRS/ENS/UCP) et, de manière plus générale, le règlement intérieur du laboratoire.

Tout comportement contraire aux règles du statut général des fonctionnaires de l’Etat et aux dispositions du présent règlement intérieur peut, selon la nature et le niveau de gravité, faire l’objet de l’une des sanctions prévues par les textes en vigueur, qu’il s’agisse notamment d’infraction aux règles d’hygiène et de sécurité ou de manquement aux règles relatives au fonctionnement général ou aux rythmes de travail.

Article 7 - Confidentialité

Tout membre du laboratoire, et toute personne accueillie en son sein, sont tenus de respecter la confidentialité des travaux qui lui sont confiés ainsi que ceux de ses collègues. Il en va de même pour les résultats scientifiques liés à ceux-ci.

Par conséquent, les personnels de l’Unité s’engagent à garder secrètes les informations de toute nature qui leur ont été signalées comme confidentielles, qu’ils auraient pu recueillir à l’occasion des contacts et ce par quelque moyen ou quelque support que ce soit, avec les différents groupes de l’Unité, à l’exception de celles :

- qui sont dans le domaine public ou qui y tombent autrement que par le fait du personnel de l’Unité destinataire de l'information ;
- qui sont déjà en la possession ou sont communiquées au personnel de l’Unité destinataire par des tiers non tenus au secret.

Rappel : Les personnels non statutaires accueillis dans l’Unité doivent impérativement signer un engagement personnel de confidentialité à leur arrivée.

Pendant la durée de son séjour dans le laboratoire et durant les 5 années qui suivent son départ, le signataire de cet engagement considérera comme strictement confidentiels les savoir-faire développés par l’unité et s’interdira de divulguer les informations, données, programmes ou concepts dont il aurait pu avoir connaissance à l’occasion de ce séjour.

En cas de présentation des travaux et résultats à l’extérieur, quels qu’en soient la forme et le support, l’autorisation du directeur du laboratoire et du responsable scientifique de ces travaux est obligatoire.

Pour toutes présentations et échanges sur les travaux et résultats de recherche de l’Unité avec des partenaires institutionnels et/ou socio-économiques, la signature d’un accord de secret entre les parties concernées est fortement recommandée.

Les services de valorisation des tutelles du laboratoire doivent être contactés à cet effet.

L’obligation de secret ne peut faire obstacle à l’obligation qui incombe aux chercheurs affectés à l’unité d’établir leur rapport annuel d’activité pour l’organisme dont ils relèvent, cette communication à usage interne ne constituant pas une divulgation au sens des lois sur la propriété industrielle.
Les dispositions du présent article ne peuvent pas non plus faire obstacle à la soutenance d'une thèse par un chercheur, ou du rapport par stagiaire ou une autre personne affecté à l’unité qui pourra se faire le cas échéant à huis clos, afin de protéger la confidentialité des informations.

Il est fortement recommandé à tous les personnels de recherche de l'Unité de tenir un cahier de laboratoire afin de garantir le suivi et la protection des résultats de leurs travaux.

Le cahier garantit la traçabilité et la transmission des connaissances, c'est également un outil juridique en cas de litige. Un cahier sera remis, sur demande, à chaque nouvel arrivant et devra être retiré au service de valorisation des tutelles.

Rappel : Les cahiers de laboratoire appartiennent aux tutelles de l'Unité et sont conservés au laboratoire même après le départ d'un personnel (dans certains cas une copie peut être faite).

Article 8 - Publications scientifiques et communication

Les publications des personnels de l'unité doivent faire apparaître le lien avec les organismes de tutelle.

L'affiliation correspond aux dispositions de la convention entre les tutelles en vigueur.

nom de(s) l'auteur(s) :

intitulé du laboratoire :

SATIE - UMR 8029 - tutelle : CNAM ou CNRS ou ENS CACHAN ou Université de Cergy-Pontoise

Un exemplaire de toutes les publications (articles, revues, thèses ...) dont tout ou partie du travail a été effectuée à l’Unité doit être intégré dans la base des publications de l’unité par l’un des auteurs.

Toute diffusion et communication doit respecter les lois sur la presse et tous les moyens de diffusion plus classiques. Doivent être respectées les règles ou textes de lois relatives :

- aux informations nominatives (déclaration à la CNIL),
- aux contrats comportant des clauses de confidentialité,
- aux droits d’auteurs (copyright) sur les textes, images, sons, vidéos ...

Les règles de communication spécifiques pour les UMR sont précisées en annexe 4 du présent règlement.

Article 9 - Propriété intellectuelle

Les résultats et notamment les inventions obtenus au sein de l’Unité appartiennent aux tutelles de l’Unité en application de l’article L.611-7 du code de la propriété intellectuelle.

Dans le cas où les résultats obtenus le seraient par les personnels non rémunérés par les tutelles, les tutelles du laboratoire proposeront au personnel concerné un accord de cession de droits sur tous résultats valorisables. Les services de valorisation des tutelles établiront cet accord de cession de droits.

Les droits patrimoniaux sur les logiciels et leur documentation réalisés au sein de l’Unité sont dévolus aux tutelles en application de l’article L.113-9 du code de la Propriété intellectuelle.

Les tutelles de l’Unité disposent seules du droit de protéger les résultats des travaux de l’Unité en déposant des titres de propriété intellectuelle auprès des organismes de protection référents.

Le personnel de l’Unité doit prêter son entier concours aux procédures de protection des résultats issus des travaux auxquels il a participé, et notamment au dépôt éventuel d’une demande de brevet, au maintien en vigueur d’un brevet et à sa défense, tant en France qu’à l’étranger.

Les tutelles s’engagent à ce que le nom des inventeurs soit mentionné dans les demandes de brevets à moins que ceux-ci ne s’y opposent.

Il est rappelé que le Directeur de l’Unité pourra faire appel aux services valorisation des tutelles afin d’étudier la confidentialité, les questions sur le droit d’auteur, la brevetabilité, la protection des résultats ou les possibilités de valorisation des travaux et résultats scientifiques avant leur divulgation.
Article 10 - Contrats, décisions de subvention et ressources propres

Le personnel doit informer le Directeur du laboratoire de toute collaboration éventuelle avec des partenaires extérieures aux établissements de tutelle. Sur les contrats, le visa du responsable scientifique du projet et du directeur du laboratoire devront apparaître.

Toute demande de subvention de l’Unité avec des partenaires publics et/ou privés devra faire l’objet d’une information préalable auprès du directeur du laboratoire.

De même, tout achat d’équipement et tout recrutement de personnel doit faire l’objet d’une demande officielle auprès du Directeur du laboratoire.

Article 11 - Encadrement doctoral et formation par la recherche

Chaque membre du laboratoire, lorsque sa qualité le lui permet, peut diriger une ou plusieurs thèse(s), un ou plusieurs stage(s). Les obligations réciproques du directeur de thèse et du doctorant sont précisées dans la charte de thèse en vigueur dans l’école doctorale de rattachement.

L’accueil d’un doctorant ou d’un stagiaire doit recevoir l’accord préalable du directeur du laboratoire au vu des moyens et locaux disponibles.

Tout stage effectué au laboratoire doit faire l’objet d’une convention de stage signée notamment par le Délégué régional du CNRS compétent ou par le responsable de l’établissement d’accueil, avant le début du stage.

Les doctorants doivent signer la charte des thèses prévue par l’Ecole doctorale de rattachement. La charte des thèses de l’Institut des écoles doctorales des tutelles est accessible sur le site de ces dernières.

Article 12 - Utilisation des moyens informatiques et des ressources techniques collectives

L’utilisation des moyens informatiques est soumise à des règles explicitées dans les Chartes informatiques de chacune des tutelles.

Ces Chartes qui ont pour objet de préciser la responsabilité des utilisateurs, au regard de la législation doivent être signées par tout nouvel arrivant.

Les membres du laboratoire s’engagent à respecter les règles d’utilisation des équipements et moyens collectifs ou mutualisés des établissements d’accueil des tutelles et à signaler tout dysfonctionnement.

Article 13 - Formation

Le plan de formation est soumis pour avis au Conseil de laboratoire. Il est transmis au service des ressources humaines de la Délégation ainsi qu’à la DRH des tutelles.

Le correspondant de formation informe les personnels des actions de formation susceptibles de les intéresser, les assiste et les Conseille dans leurs démarches en lien avec le responsable hiérarchique de chaque agent.

Article 14 - Date d’entrée en vigueur du règlement intérieur

Le règlement intérieur est en vigueur à la date de signature par les responsables des tutelles. Il pourra faire l’objet d’un avenant suite à une évolution réglementaire importante, où à la demande des tutelles.

Article 15 - Publicité

Le présent règlement intérieur est porté à la connaissance des agents par voie d’affichage dans les locaux de l’Unité sur le site des différentes tutelles.

Article 16 - Règlement des différends

En cas de différend susceptible d’entraîner le fonctionnement normal du laboratoire, non résolu par le Conseil de laboratoire, l’un des Conseils scientifiques des tutelles sera saisi. Ce dernier a la faculté de saisir le responsable de la tutelle saisie, lequel, après consultation des parties en litige et du Conseil scientifique des tutelles prend les mesures nécessaires à la résolution du différend, pouvant aller jusqu’à la nomination d’un administrateur provisoire dans l’attente de l’organisation de nouvelles élections.
Il annule et remplace le règlement intérieur précédent

Adopté par le conseil de laboratoire à la séance du 3 octobre 2013

<table>
<thead>
<tr>
<th>Nom et Titre</th>
<th>Date et Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>L’administrateur général du Conservation National des Arts et Métiers</td>
<td></td>
</tr>
<tr>
<td>Christian FORESTIER</td>
<td></td>
</tr>
<tr>
<td>Le délégué régional du CNRS</td>
<td></td>
</tr>
<tr>
<td>Brice KERBER</td>
<td></td>
</tr>
<tr>
<td>Le président de l’Ecole Normale Supérieure de Cachan</td>
<td></td>
</tr>
<tr>
<td>Pierre-Paul ZALLIO</td>
<td></td>
</tr>
<tr>
<td>Le président de l’Université de Cergy-Pontoise,</td>
<td></td>
</tr>
<tr>
<td>François GERMINET</td>
<td></td>
</tr>
<tr>
<td>Le directeur du laboratoire</td>
<td></td>
</tr>
<tr>
<td>Pascal LARZABAL</td>
<td></td>
</tr>
</tbody>
</table>
ANNEXE 1 : LISTE DES PERMANENTS DU LABORATOIRE

<table>
<thead>
<tr>
<th>Mohamed</th>
<th>ABBAS TURKI</th>
<th>Thierry</th>
<th>KOCINIEWSKI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hisham</td>
<td>ABOU KANDIL</td>
<td>Denis</td>
<td>LABROUSSE</td>
</tr>
<tr>
<td>Sophie</td>
<td>ABRIEL</td>
<td>Richard</td>
<td>LALLEMAND</td>
</tr>
<tr>
<td>Dominique</td>
<td>BACH</td>
<td>Pascal</td>
<td>LARZABAL</td>
</tr>
<tr>
<td>Béatrice</td>
<td>BACUET</td>
<td>Sandrine</td>
<td>LE BALLOIS</td>
</tr>
<tr>
<td>Jean-Pierre</td>
<td>BARBOT</td>
<td>Yohan</td>
<td>LE DIRAISON</td>
</tr>
<tr>
<td>Hamid</td>
<td>BEN AHMED</td>
<td>Jean-Yves</td>
<td>LE HUEROU</td>
</tr>
<tr>
<td>Djejiga</td>
<td>BENOUIOUA</td>
<td>Bruno</td>
<td>LE PIOULE</td>
</tr>
<tr>
<td>Mounira</td>
<td>BERKANI-BOUARROUDJ</td>
<td>Michel</td>
<td>LECRIVAIN</td>
</tr>
<tr>
<td>Régis</td>
<td>BESSE</td>
<td>Stéphane</td>
<td>LEFEBVRE</td>
</tr>
<tr>
<td>Dominique</td>
<td>BIED-CHARETON</td>
<td>Martino</td>
<td>LO BUE</td>
</tr>
<tr>
<td>Pachak</td>
<td>BOIGNALITH</td>
<td>Jean-Paul</td>
<td>LOUIS</td>
</tr>
<tr>
<td>Henri</td>
<td>BOURLES</td>
<td>Vincent</td>
<td>LOYAU</td>
</tr>
<tr>
<td>Denis</td>
<td>CANDUSO</td>
<td>Florence</td>
<td>MARCHAND-RAZAN</td>
</tr>
<tr>
<td>Emmanuel</td>
<td>CAPLAIN</td>
<td>Bogdan</td>
<td>MARINESCU</td>
</tr>
<tr>
<td>Gérard</td>
<td>CHAPLIER</td>
<td>Loïc</td>
<td>MARTINEZ</td>
</tr>
<tr>
<td>Eric</td>
<td>CHAUMETTE</td>
<td>Frédéric</td>
<td>MAZALEYRAT</td>
</tr>
<tr>
<td>Gérard</td>
<td>COQUERY</td>
<td>Magalie</td>
<td>MICHEL</td>
</tr>
<tr>
<td>François</td>
<td>COSTA</td>
<td>Eric</td>
<td>MONMASSON</td>
</tr>
<tr>
<td>Franck</td>
<td>DAOUT</td>
<td>Bernard</td>
<td>MULTON</td>
</tr>
<tr>
<td>Alexandre</td>
<td>DE BERNARDINIS</td>
<td>Nassime</td>
<td>NOUR EL HADI</td>
</tr>
<tr>
<td>Olivier</td>
<td>DE LA BARRIERE</td>
<td>Javier</td>
<td>OJEDA</td>
</tr>
<tr>
<td>François</td>
<td>DEMANGE</td>
<td>Jean-Pierre</td>
<td>OUSTEN</td>
</tr>
<tr>
<td>Laurent</td>
<td>DUPONT</td>
<td>Oleksandr</td>
<td>PASKO</td>
</tr>
<tr>
<td>Cécile</td>
<td>DURIEU</td>
<td>Dominique</td>
<td>PLACKO</td>
</tr>
<tr>
<td>Anne</td>
<td>FERREOL</td>
<td>Laurent</td>
<td>PREVOND</td>
</tr>
<tr>
<td>Philippe</td>
<td>FORSTER</td>
<td>Nandhini</td>
<td>RAJARAVISHANKAR</td>
</tr>
<tr>
<td>Olivier</td>
<td>FRANCAIS</td>
<td>Bertrand</td>
<td>REVOL</td>
</tr>
<tr>
<td>Mohamed</td>
<td>GABI</td>
<td>Gwénaël</td>
<td>ROBIN</td>
</tr>
<tr>
<td>Aurore</td>
<td>GALLOS</td>
<td>Gilles</td>
<td>ROSTAING</td>
</tr>
<tr>
<td>Cyrille</td>
<td>GAUTIER</td>
<td>Bastien</td>
<td>ROUCARIES</td>
</tr>
<tr>
<td>Marcel</td>
<td>GINDE</td>
<td>Marie</td>
<td>RUELLAN</td>
</tr>
<tr>
<td>Damien</td>
<td>GRENIER</td>
<td>Françoise</td>
<td>SCHMITT</td>
</tr>
<tr>
<td>Pascal</td>
<td>GRIESMAR</td>
<td>Stéphane</td>
<td>SERFATY</td>
</tr>
<tr>
<td>Laurent</td>
<td>GRISCOM</td>
<td>Marcel</td>
<td>STAROSVIECKI</td>
</tr>
<tr>
<td>Guillaume</td>
<td>HERAUT</td>
<td>Kathy</td>
<td>TRECA DE KERDAY</td>
</tr>
<tr>
<td>Sami</td>
<td>HLOUI</td>
<td>Patrice</td>
<td>VALLADE</td>
</tr>
<tr>
<td>Emmanuel</td>
<td>HOANG</td>
<td>Dejan</td>
<td>VASIC</td>
</tr>
<tr>
<td>Ali</td>
<td>IBRAHIM</td>
<td>Lionel</td>
<td>VIDO</td>
</tr>
<tr>
<td>Lahoucine</td>
<td>IDKHAJINE</td>
<td>Eric</td>
<td>VOURC'H</td>
</tr>
<tr>
<td>Damien</td>
<td>INGROSSO</td>
<td>Bogdan</td>
<td>VULTURESCU</td>
</tr>
<tr>
<td>Juliette</td>
<td>KAUV</td>
<td>Martinus</td>
<td>WERTS</td>
</tr>
<tr>
<td>Marielle</td>
<td>KEROULLAS</td>
<td>Nicolas</td>
<td>WILKIE-CHANCELLIER</td>
</tr>
<tr>
<td>Zoubir</td>
<td>KHATIR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ANNEXE 2 : MEMBRES DES INSTANCES DU LABORATOIRE

<table>
<thead>
<tr>
<th>Membres du conseil de laboratoire</th>
<th>Membres du comité scientifique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sophie ABRIET</td>
<td>Hisham ABOU KANDIL</td>
</tr>
<tr>
<td>Jean-Pierre BARBOT</td>
<td>Hamid BEN AHMED</td>
</tr>
<tr>
<td>Mounira BERKANI</td>
<td>François COSTA</td>
</tr>
<tr>
<td>Baptiste CHAREYRON</td>
<td>Alexandre DE BERNARDINIS</td>
</tr>
<tr>
<td>Olivier FRANÇAIS</td>
<td>Franck DAOUT</td>
</tr>
<tr>
<td>Benjamin GAUSSENS</td>
<td>Philippe FORSTER</td>
</tr>
<tr>
<td>Kévin KASPER</td>
<td>Mohamed GABSI</td>
</tr>
<tr>
<td>Pascal LARZABAL</td>
<td>Cyrille GAUTIER</td>
</tr>
<tr>
<td>Stéphane LEFEBVRE</td>
<td>Pascal GRIEMSMAR</td>
</tr>
<tr>
<td>Martino LO BUE</td>
<td>Zoubir KHAHIR</td>
</tr>
<tr>
<td>Bernard MULTON</td>
<td>Pascal LARZABAL</td>
</tr>
<tr>
<td>Gwenaël ROBIN</td>
<td>Jean-Yves LE HUEROU</td>
</tr>
<tr>
<td>Stéphane SERFATY</td>
<td>Bruno LE PIOUFLE</td>
</tr>
<tr>
<td>Patrice VALLADE</td>
<td>Stéphane LEFEBVRE</td>
</tr>
<tr>
<td>Eric VOURCH’</td>
<td>Vincent LOYAU</td>
</tr>
<tr>
<td>Martinus WERTS</td>
<td>Frédéric MAZALEYRAT</td>
</tr>
<tr>
<td>Nicolas WILKIE-CHANCELLIER</td>
<td>Stéphane SERFATY</td>
</tr>
</tbody>
</table>

ANNEXE 3 : SECURITE ET PREVENTION

S’il incombe au directeur de veiller à la sécurité et à la protection des personnels et d’assurer la sauvegarde des biens du laboratoire, chaque personnel doit prendre soin, en fonction de sa formation et selon ses possibilités, de sa sécurité et de sa santé ainsi que celle de ses collègues de travail.

Le Comité régional d’hygiène et de sécurité et des conditions de travail (CRHSCT) de la Circonscription Île-de-France Est du CNRS.

Il assiste le délégué régional pour tout ce qui concerne la sécurité dans la circonscription Île-de-France Est. Il est en particulier chargé de visiter périodiquement les laboratoires et services et de conseiller les responsables et les personnels sur la mise en application des règles d’hygiène et de sécurité.

Il travaille en collaboration avec les médecins de prévention et fournit toutes les informations relatives aux risques professionnels et aux moyens de s’en prémunir.

Assistant de prévention (AP).

L’assistant de prévention assiste et conseille le directeur, il informe et sensibilise les personnels travaillant dans le laboratoire pour la mise en œuvre des consignes d’hygiène et sécurité, en liaison étroite avec l’inspecteur d’hygiène et de sécurité.

Consignes de prévention et de sécurité

Le personnel est tenu de se conformer en particulier, aux consignes ci-après énoncées.

Il est interdit de :

- contrevenir aux règles de sécurité concernant l’utilisation des machines et la manipulation des produits dangereux ;
- procéder à la mise en route, l’arrêt, le démontage d’appareils sans en prévenir la personne responsable ;
- emporter sans autorisation des documents appartenant au laboratoire ;
- introduire des armes ou engins prohibés ;
manipuler les matériels de secours (extincteurs…) en dehors de leur utilisation normale et d’en rendre l’accès difficile ;

neutraliser tout dispositif de sécurité.

Mesures particulières

Tous les locaux présentant un risque particulier (chimique, biologique, rayonnement…) font l’objet d’une signalétique particulière.

Les opérations de manutention sont réservées aux personnels habilités à le faire.

Aucune porte intérieure ne doit rester fermée à clef après la sortie du travail, à l’exception de certains locaux dont la liste est établie par le directeur du laboratoire.

Tout risque d’incendie, de court-circuit, de fuites de gaz, d’eau ou de vapeur, doit être signalé immédiatement au premier responsable disponible ou au standard.

Tout accident, même léger, survenu au cours du travail ou du trajet, doit être porté à la connaissance du supérieur hiérarchique de l’intéressé ou du service du personnel, le plus rapidement possible et au plus tard dans les 24 heures, sauf cas de force majeure ou impossibilité absolue.

Le travail isolé en horaires décalés doit rester exceptionnel et dans la mesure du possible consacré à des tâches ne présentant pas de risques (rédaction, calcul, recherches bibliographiques…). Dans le cas où des travaux dangereux doivent nécessairement être exécutés hors horaires normaux et/ou sur des lieux isolés ou locaux éloignés, il est obligatoire d’être accompagné. En fonction de ces différents cas possibles, une organisation au sein du laboratoire ainsi qu’au poste de travail doit être mise en place. Dans tous les cas, une autorisation expresse du directeur est requise.

En application des dispositions légales en vigueur, le personnel est tenu de se soumettre aux visites médicales de prévention.

Le laboratoire décline toute responsabilité en cas de vol d’argent ou d’effets personnels qui pourrait survenir sur les lieux de travail.

Affichages

L’identité de l’assistant de prévention et la composition nominale du comité d’hygiène et de sécurité sont affichées sur les panneaux réservés à l’affichage administratif.

Les dispositions à prendre en cas d’accident et d’incendie font l’objet d’un document spécifique également affiché dans les locaux du laboratoire.

ANNEXE 4 : ACMO (assistant de prévention) DU LABORATOIRE

Nom et coordonnées de l’ACMO (ou assistant prévention du laboratoire) : Gwénaël ROBIN : gwenael.robin@satie.ens-cachan.fr

ROLE DE L’ACMO (assistant de prévention)

Le rôle de l’ACMO tel que défini dans l’instruction générale no 030039IGHS du 24 juin 2003 relative à l’hygiène et la sécurité ainsi qu’à la santé au travail au CNRS

L’agent chargé de la mise en œuvre des règles d’hygiène et de sécurité (ACMO)

L’ACMO est nommé, après avis du Conseil d’unité, par le directeur d’unité. La décision de nomination de l’ACMO est visée par le délégué régional et, le cas échéant, par le chef de l’établissement partenaire.

L’agent proposé doit être motivé par les questions touchant à la sécurité et être prêt à recevoir les formations nécessaires. Sa compétence et sa position doivent être reconnues par l’ensemble des personnels de l’unité.

Il travaille en liaison étroite avec l’ingénieur régional de prévention et de sécurité et le médecin de prévention.

Il s'assure, sous la responsabilité du directeur, qu'au mieux en matière de fonctionnement que d'infrastructure, les obligations réglementaires sont bien appliquées dans l'unité.

Il propose des mesures préventives de toute nature au directeur de l'unité et fait mettre en application celles qui sont préconisées par les ingénieurs de prévention et de sécurité, les membres des corps d'inspection et les médecins de prévention, et qui ont été retenues par le directeur.
Il assure le secrétariat et le suivi des travaux du comité spécial d'hygiène et de sécurité de l'unité, s'il en existe un. Il sensibilise les agents de l'unité au respect des consignes et règles de sécurité et participe à leur formation.

Il informe les nouveaux arrivants dans l'unité des dispositions du règlement intérieur, des risques particuliers rencontrés dans l'unité et des bonnes pratiques pour les prévenir.

Il anime le groupe de travail chargé de l'évaluation a priori des risques. Il veille à la mise en place des premiers secours en cas d'accident, et d'une équipe de première intervention spécialisée en cas de risques spécifiques.

Il participe aux visites des installations effectuées par les membres des structures de contrôle et de Conseil.

Il tire tous les enseignements des accidents et incidents survenus dans l'unité et les communique aux ingénieurs de prévention et de sécurité et aux médecins de prévention. Il veille à la bonne tenue du registre d'hygiène et de sécurité dans lequel tout agent de l'unité peut consigner ses observations et suggestions relatives à la prévention des risques professionnels et à l'amélioration des conditions de travail.

Dans le cas de risques spécifiques (rayonnements ionisants par exemple), les missions de l'ACMO doivent être coordonnées avec celles des personnes compétentes pour ces risques spécifiques.

ANNEXE 5 : REGLES DE COMMUNICATION SPECIFIQUES AUX UMR

Les personnels de l’Unité sont tenus de respecter les règles de communication du CNRS explicitées dans la Charte de la Communication du CNRS.

L’utilisation du logo des tutelles et de l’Unité ne peut se faire sans l’autorisation du Directeur de l’Unité et des représentants dûment habilités des tutelles de l’Unité concernées.

Le nom et le Logo du CNRS sont déposés à titre de marque en France comme dans l’ensemble de la Communauté européenne.

Cependant, de manière exceptionnelle, des autorisations ponctuelles peuvent être accordées dans le cadre d'événements particuliers justifiant la référence au CNRS. Les conditions suivantes doivent alors être respectées :

- un accord exprès et préalable du CNRS (le Service Partenariat Valorisation centralise les demandes),
- l'existence d'un contexte scientifique spécifique (concession de licence de brevet, mise à disposition de moyens humains...)
- l'insertion d'un message clair précisant, dans la limite des informations divulgables au public, pourquoi le CNRS a accepté l'utilisation de son logo.

La création de sites internet, de blogs et autres diffusions sur internet concernant les travaux d’un ou plusieurs personnels de l’Unité doit faire l’objet d’une autorisation du Directeur d’Unité ainsi qu’aux représentants des tutelles de l’Unité.

Il est rappelé dans l’installation et la gestion d’un serveur www que le Directeur de l’unité est responsable de l’information délivrée par le serveur de son laboratoire (http://www.urec.cnrs.fr/article408.html).

Le Directeur de l’Unité devra faire appel au Service de Communication de la Délégation CNRS afin de valider l’autorisation de diffusion des informations liées à la communication sur le CNRS (logo, charte graphique, site internet, photos, films...).

De manière analogue à une publication traditionnelle, un serveur doit avoir "un directeur de publication" qui assure la responsabilité de l’information qui est accessible sur le serveur. Cette fonction ne peut être assurée que par le directeur du laboratoire. Un serveur doit respecter les lois sur la presse et tous les moyens de diffusion plus classiques.

D 6. Annexe 6 : Liste des réalisations de SATIE

D 6.1. Réalisations du pôle CSEE

D 6.1.a. Production scientifique du pôle CSEE

a. Articles dans des revues internationales (ACL)

Partie D : Annexes de SATIE

Loyau, V; Lo Bue, M; Mazaleyrat, F “Measurement of magnetic losses by thermal method applied to power ferrites at high level of induction and frequency”.Review of Scientific Instruments 80 (2009) #024703

S. Pietranico, S. Pommier, S. Lefebvre, Z. Khatir, S. Bontemps, Characterisation of power ceramic substrates for reliability aspects, Microelectronics Reliability, Volume 49, Issues 9-11, September-November 2009, Pages 1260-1266

[61] Takhedmit, H (Takhedmit, H.); Cirio, L (Cirio, L.); Merabet, B (Merabet, B.); Allard, B (Allard, B.); Costa, F (Costa, F.); Voltaire, C (Voltaire, C.); Picon, O (Picon, O). « Efficient 2.45 GHz rectenna design including harmonic rejecting rectifier device », ELECTRONICS LETTERS, 46 (12): 811-U17 JUN 10 2010
Partie D : Annexes de SATIE

Adami, Salah-Eddine; Degrenne, Nicolas; Haboubi, Walid; Takhedmit, Hakim; Labrousse, Denis; Costa, Francois; Allard, Bruno; Luk, Jean Daniel Lan Sun; Cirio, Laurent; Picon, Odile; Vollaire, Christian," Ultra-Low Power, Low Voltage, Self-Powered Resonant DC–DC Converter for Energy Harvesting", Journal of Low Power Electronics, Volume 9, Number 1, April 2013 , pp. 103-117(15)

Marwan Ali, Eric Labouré, and François Costa, "Integrated Active Filter for Differential-Mode Noise Suppression", IEEE transactions on power electronics, à paraître

O. de la Barrière, H. Ben Ahmed, M. Gabsi, M. LoBue, 2D analytical airgap field model of an inset permanent magnet synchronous machine, taking into account the slotting effect, IEEE Transactions on Magnetics, sous presse

Articles dans des revues nationales avec comité de lecture (ACLN)

16. Denis Labrousse, Gilles Feld, Bertrand Revol Principe de fonctionnement et commande de type pleine onde d'un convertisseur MMC (Multilevel Modular Converter) Revue 3EI n°2013-72

C. Gautier, F. Adam, E. Laboure, D. Labrousse, and B. Revol, Multicell Interleaved Converter with ICTs : dynamic balancing of currents, European Journal of Electrical Engineering, accepted, to be published 2013

c. Communications avec actes dans un congrès international

[1] C. Labarre, F. Costa, « Resolution enhancement in magnetic near field scanning by processing techniques”, European conference on electromagnetic compatibility, EMC EUROPE’08, Hambourg, 8-12 sept 2008, on CDROM.

Annexes de SATIE
Partie D : Annexes de SATIE

Beltraminì, M.; Prissè, L.; Asfàux, P.; Roux, N.; Richardeau, F.; Roboam, X.; Costa, F.; Revol, B.; Comparison of different inverter architectures and controls in terms of conducted EMI, IEEE International Conference on Industrial Technology (ICIT), 2010.

[97] D.Labrousse, B.Revol, C. Gauthier, F.Costa "Minimizing temporal simulation time to estimate common mode disturbances: experimental considerations" 14th European Conference on Power Electronics Conference and Applications, EPE’11, 30 août – 1 Septembre, Birmingham, UK

Y.-P. Liu, D. Vasic, F. Costa, D. Schwander. Piezoelectric 10W DC/DC converter for space applications. *EPE 2011, Birmingham UK, 30 August-1 September 2011*

Lilia GALAI, François COSTA, Bertrand REVOL, “High insulation Power supply for high-power IGBT gate drivers in a multilevel converter”, *PCIM Nuremberg 2011.*

Partie D : Annexes de SATIE

D. Othman, M. Berkani, S. Lefebvre, A. Ibrahim, Z. Khatir, A. Bouzourene. “Comparison study on performances and robustness between SiC MOSFET & JFET devices – Abilities for aeronautics application”, ESREF’12 23rd European Symposium on Reliability of Electron Devices, Failure Physics and Analysis October 1 - 5, 2012 Cagliari, Italy

Y.-P. Liu, D. Vasic, F. Costa. Improvement of Burst-Mode Controlled Piezoelectric Transformers, EPE-PEMC’2012 ECCE Europe, Novi Sad Serbia, 4-6 September 2012

Y.-P. Liu, D. Vasic, F. Costa. Comparison of Piezoelectric Structural Damping Based on Velocity Controlled Switching and Pulse Width Modulation Switching Circuits, ASME IMECE’2012, Huston, Texas USA, 9-15 November 2012

N. Boucenna, S. Hlioui, B. Revol, F. Costa; Modeling of the propagation of high-frequency currents in AC motors, EMCE Europe 2012, Rome, Italy, 17-21 September 2012

Z. Khatir, S. Lefebvre, “Main issues and limitations in Power cycling tests for future integrated power converters” APE2013, Avril 2013

D. Vasic, F. Costa. Study of a Piezoelectric Energy Harvester with a Dynamic Magnifier, SPIE Smart Structures 2013, San Diego CA USA, 10-14 March 2013

D. Vasic, Y. Yao. Piezoelectric Energy Harvester with PWM Electric Interface, EPE 2013 ECCE Europe, Lille, France, 3-5 September 2013

d. Invitations dans un congrès international

[7] F. Costa « Récents travaux du laboratoire SATIE CNRS-ENS Cachan en CEM des systèmes de puissance ; techniques de simulation à coût de calcul minimal. ». Séminaire à université de Liège, Institut Montefiore (17/03/2010)

[10] F. Mazaleyrat, Recent trends in soft magnetic material for high frequency power application, Czech and Slovak Conference on Magnetism, Kosice, juin 2013

e. Communications avec actes dans un congrès national

Éric Labouré, François Forest, Thierry Meynard, Philippe Cussac, « Applications du concept d'entrelacement de convertisseurs parallèles par transformateurs intercellulaires ou coupleurs », EPF2008, Tours, juillet 2008

Section des unités de recherche

Partie D : Annexes de SATIE

Ghania Belkacem, Mounira Bouarroudj-Berkani, Denis Labrousse, Stéphane Lefebvre, Gilles Rostaing, Ulrich Kuhne, Laurent Fribourg, Romain Soulart, Eric Florentin, Christian Rey, Pierre-Yves Joubert, Serge Bontemps « Modélisation électrothermique distribuée d’un transistor COOLMOSTM » Electronique de Puissance du Futur, juillet 2012, Bordeaux

D. Othman, M. Berkani, S. Lefebvre, A.Ibrahim, Z. Khatir, A. Bouzourene, « Etude Comparative de transistors MOSFET et JFET en technologie SiC - Potentiel d’utilisation dans les applications aéronautiques », Electronique de Puissance du Futur, juillet 2012, Bordeaux

Yi Tian, Dejan Vasic, Stéphane Lefebvre « Récupération d’énergie thermique sur un transistor de puissance », Electronique de Puissance du Futur, juillet 2012, Bordeaux

T.A Nguyen, S. Lefebvre, P.Y Joubert, S Bontemps, Méthode de diagnostic du vieillissement de puces de puissance utilisant des capteurs à courant de Foucault, Electronique de Puissance du Futur, juillet 2012, Bordeaux.

N. Boucenna, S. Hlioui, B. Revol, F. Costa; Modélisation de la propagation des courants de mode commun HF dans la masse métallique des moteurs AC. Colloque International et Exposition sur la Compatibilité Electromagnétique (CEM), Rouen - France, 24-27 Avril 2012

f. Ouvrages scientifiques

Partie D : Annexes de SATIE

Autres publications (y compris vulgarisation et diffusion du savoir)

B. Multon, “Pour une électricité 100 % renouvelable,” in Conférence dans le cycle développement durable de la commune de Pont Péan, 25 octobre 2012., 2012.

B. Multon, “Comprendre et décoder les notions énergétiques dans une logique de développement durable,” in Conférence (2h) aux Professeurs et élèves de STI2D et BTS du Finistère, Brest lycée Dupuy de Lôme, 29 mars 2012., 2012.

B. Multon, “Comprendre et décoder les notions énergétiques dans une logique de développement durable,” in Conférence (2h) aux Professeurs et élèves de STI2D du lycée de Bréquigny, Rennes 7 mai 2012., 2012.

B. Multon, “Expériences de sensibilisation à l’Énergie à destination du secondaire ?,” in Conférence – débat Interactions entre secondaire et supérieur, Congrès du club EEA, Lille 7 juin 2012., 2012.

B. Multon, “Electricité et énergie, vers une production 100 % renouvelable,” in Conférence dans le cycle annuel de l’association A2R1 (retraités de l’Université de Rennes 1), Rennes, 18 octobre 2012., 2012.

B. Multon, “Pour une électricité 100 % renouvelable,” in Conférence dans le cycle développement durable de la commune de Pont Péan, 25 octobre 2012., 2012.

B. Multon, “Comprendre et décoder les notions énergétiques dans une logique de développement durable,” in Conférence (2h) aux Professeurs et élèves de STI2D et BTS du Finistère, Brest lycée Dupuy de Lôme, 29 mars 2012., 2012.

B. Multon, “Comprendre et décoder les notions énergétiques dans une logique de développement durable,” in Conférence (2h) aux Professeurs et élèves de STI2D du lycée de Bréquigny, Rennes 7 mai 2012., 2012.

B. Multon, “Énergie durable : vers une électricité 100% renouvelable,” in Conférence remise des prix des Olympiades Scientifiques, Rennes, 13 juin 2012., 2012.

D 6.1.b. Liste des brevets du pôle CSEE

[1] MOYNOT Victor; Franck CHABOT; Michel LECRIVAIN; Mohamed GABSI; Sami HLIOU "Rotating electric machine with homopolar double excitation", Brevet chinois CN102210087, 2011, PSA/CNRS, [priorité FR2938385]

[2] MOYNOT Victor; Franck CHABOT; Michel LECRIVAIN; Mohamed GABSI; Sami HLIOU "Rotating electric machine with homopolar double excitation", Brevet européen EP2345137, 2011, PSA/CNRS, [priorité FR2938385]

[3] MOYNOT Victor; Franck CHABOT; Michel LECRIVAIN; Mohamed GABSI; Sami HLIOU "Machine électrique tournante à double excitation de type homopolaire", Brevet français FR2938383, 2013, PSA/CNRS

[4] MOYNOT Victor; Franck CHABOT; Michel LECRIVAIN; Mohamed GABSI; Sami HLIOU "Rotating electric machine with homopolar double excitation", Brevet US US8441163, 2013, PSA/CNRS, [priority FR2938385]

[5] MOYNOT Victor; Franck CHABOT; Michel LECRIVAIN; Mohamed GABSI; Sami HLIOU "Rotating electric machine with homopolar double excitation", Brevet WO2010052439, 2010, PSA/CNRS, [priorité FR2938385]

[6] HOANG Emmanuel; LECRIVAIN Michel; GABSI Mohamed, "Elektrische Maschine mit flusssumschaltungs- Doppelregung", Brevet AT508519, 2011, CNRS, [priorité FR2898439]

[8] HOANG Emmanuel; LECRIVAIN Michel; GABSI Mohamed, "Flux-switching dual-excitation electrical machine", Brevet ES2366055, 2011, CNRS, [priorité FR2898439]

[12] LECRIVAIN Michel; GABSI Mohamed; BEN AHMED Hamid; SEDDA Emmanuel; FAGEON Christophe, "Electromagnetic valve actuator for an internal combustion engine, and engine with such an actuator", Brevet EP1703089, 2011, CNRS

[13] LECRIVAIN Michel; GABSI Mohamed; BEN AHMED Hamid; SEDDA Emmanuel; FAGEON Christophe, "Electromagnetic valve actuator for an internal combustion engine, and engine with such an actuator", Brevet ES2373396, 2012, CNRS, [priorité FR2898439]

[14] MEYNARD Thierry; FOREST Francois; RICHARDEAU Frédéric; LABOURE Eric, "Verfahren und Einrichtung zur Zuführung zu einem Magnetischen Koppler", Brevet AT411638, 2008, CNRS/INPT, [priorité FR2888396]

[15] MEYNARD Thierry; FOREST Francois; RICHARDEAU Frédéric; LABOURE Eric, "Method and device for supply to a magnetic coupler", Brevet AU2006268507, 2011, CNRS/INPT, [priority FR2888396]

[16] MEYNARD Thierry; FOREST Francois; RICHARDEAU Frédéric; LABOURE Eric, "Method and device for supply to a magnetic coupler", Brevet CN101243604, 2011, CNRS/INPT, [priorité FR2888396]

[17] MEYNARD Thierry; FOREST Francois; RICHARDEAU Frédéric; LABOURE Eric, "Method and device for supply to a magnetic coupler", Brevet EP1902513, 2008, CNRS/INPT, [priorité FR2888396]

[18] MEYNARD Thierry; FOREST Francois; RICHARDEAU Frédéric; LABOURE Eric, "Procédé et dispositif d'alimentation d'un coupleur magnétique", Brevet ES2316095, 2009, CNRS/INPT, [priorité FR2888396]

[19] MEYNARD Thierry; FOREST Francois; RICHARDEAU Frédéric; LABOURE Eric, "Method and device for supply to a magnetic coupler", Brevet IL188543, 2011, CNRS/INPT, [priorité FR2888396]

[21] MEYNARD Thierry; FOREST Francois; RICHARDEAU Frédéric; LABOURE Eric, "Method and device for supply to a magnetic coupler", Brevet KR20080040687, 2008, CNRS/INPT, [priorité FR2888396]

[22] MEYNARD Thierry; FOREST Francois; RICHARDEAU Frédéric; LABOURE Eric, "Method and device for supply to a magnetic coupler", Brevet US7847535, 2008, CNRS/INPT, [priorité FR2888396]

[26] BEN AHMED Abdel Hamid; MULTON Bernard; CAVAREC Pierre-Emmanuel; MENOITA Marc Antunes, "Linear actuator or generator with rods", Brevet CA2491421, 2010, CNRS [priorità FR2841704]

D 6.1.c. Indice de rayonnement et d’attractivité économiques du pôle CSEE

Le rayonnement du pôle CSEE est important et diversifié, tant dans des structures d’animation de la recherche, que dans celles de diffusion des connaissances. Il est observable au travers de la présence importante de ses membres dans les différentes instances à toute échelle (locale, nationale, internationale) listées ci-dessous :

- **Structures nationales d’évaluation** :

 [34] PREVOND Laurent; COLLARD Nicolas; CAPLAIN Renaud; FRANCOIS Pierre, "Method for manufacturing a metal assembly having a sheet of thermally treated aluminum to obtain alpha alumina and another sheet having surface irregularities that becomes embedded in said surface during roll bonding", Brevet JP2013522068, 2013, CNRS/CNAM/ENS Cachan, [priorité FR2957280]

 [42] MAZALEYRAT Frédéric, ZEHANI Karim, LOYAU Vicent, LABOURE Eric, "Procédé de fabrication d'un composant électromagnétique monolithique et composant monolithique associé", BF 12 52682, extension internationale en cours

Comité National 8ème section du CNRS (B. Multon, 2012→)

- **Structures d'animation de la recherche** :
 - Direction de la collaboration de recherche SpeeLabs (S. Lefebvre),
 - Comité directeur du GIS 3DPHI (F. Mazaleyrat, 2010→),
 - Comité de pilotage du LASIPS (F. Mazaleyrat, 2013→),
 - Comité de pilotage du programme de l'ANR SEED (B. Multon),
 - Groupe programmatique N°6 de l'ANCRE (alliance nationale de coordination de la recherche pour l'énergie) sur les transports (S. Lefebvre, 2012→),
 - Comité de pilotage du GDR SEEDS (H. Ben Ahmed,),
 - Co-pilotage du thème « environnement » dans le programme national de recherche POCA (Power Optimized components and Architecture, CNRS GDR SEEDS - SAFRAN) : (F. Costa, 2010→)

- **Membres de comités scientifiques de grandes conférences (steering comitee)** :
 - Conférence European Power Electronics (EPE couplée à IEEE ECCE) : 2 permanents (S. Lefebvre, E. Monmasson).
 - Conférence ELECTRIMACS : 2 permanents (S. Lefebvre, E. Monmasson).
 - Conférence Electrotechnique du Futur (EF) : 3 permanents CSEE (H. Ben Ahmed, B. Multon, M. Gabsi).
 - Journée nationale de micro-cogénération : 1 permanent (L. Prévond), principal organisateur.
 - Conférence internationale « Compatibilité électromagnétique » (CEM) : 1 permanent (F. Costa).
 - Membre de l'AdCom de la société IEEE Industrial Electronics (IES) : 1 permanent (E. Monmasson).

- **Editeurs associés dans des revues internationales et nationales** :
 - Revues IEEE transactions on Power electronics et IEEE transaction on industrial electronics : 2 permanents CSEE (F. Costa, E. Monmasson),
 - Revue Transactions d'Elsevier, Mathematics and Computers in Simulation : 1 permanent (E. Monmasson)
 - Revue European Journal of Electrical Engineering : 1 permanent (E. Monmasson)
 - Responsables de collection aux Techniques de l'Ingénieur : 2 permanents CSEE (F. Costa, F. Mazaleyrat)
 - Responsable de collection éditeur HERMES : 1 permanent (B. Multon)
 - Membre de comité scientifique de revues françaises : Revue 3EI (H. Ben Ahmed)

 Éditeur invité pour des éditions spéciales de revues internationales et nationales : 1 permanent (E. Monmasson)

- **Expertises**

 Le tableau 15 présente l’investissement des membres du pôle CSEE dans les activités d’expertise scientifique regroupées en 4 grands secteurs.
Sur la période 2008-13, l’investissement des HDR de CSEE est fort en termes de participations à des jurys de thèse/HDR en France et à l’étranger, comme le présente le tableau 16 : la moyenne annuelle est de 4,5 jurys par HDR. On a également fait apparaître dans ce tableau le nombre d’invitations des chercheurs HDR de CSEE à l’étranger (séminaire, cours, conférences). Celles-ci viennent de : Belgique (Univ. Catholique de Louvain), Espagne (Univ. de l’Alcalà, Univ. Polytechnique de Catalogne, Barcelone), Italie (Scuola Nazionale di Dottorato di Ricerca in Convertitori), Corée du Sud (Univ. de Yeungnam), Taiwan (National Taipei University), du Vietnam (UTH), d’Algérie (Univ. Annaba), de Tunisie (ENIT), etc..

<table>
<thead>
<tr>
<th>Expertises</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>programmes européen ou internationaux</td>
<td>4</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>ANR / FUI / IA / grands programmes nationaux</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Programmes régionaux</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Projets industriels / ANRT</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Tableau 13 : Expertises réalisées par les chercheurs de CSEE.

Le tableau 3 présente le bilan d’organisation de conférences nationales et internationales du pôle sur la période. Nous organisons en moyenne une conférence internationale par an, une nationale et un atelier/journée d’étude tous les deux ans. Ceci correspond donc à 2,5 manifestations de diffusion des connaissances à diverses portées par an, ce qui compte tenu des moyens logistiques dont nous disposons parait correct. L’accroissement de cet indicateur ne pourra se faire que si les moyens humains d’accompagnement sont améliorés.

<table>
<thead>
<tr>
<th>Conférences</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>bilan période</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation de conférences internationales</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Organisation de conférences nationales</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>Organisation de journées à thème/ateliers</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Tableau 14 : participation à jurys de thèse/HDR en France et à l’étranger

Les partenariats avec des laboratoires étrangers et les moyens financiers mis à la disposition de SATIE par l’ENS permettent d’inviter des chercheurs étrangers. Le tableau 4 dresse le bilan des collègues invités, ceux-ci viennent des établissements suivants :

- Université Polytechnique de Catalogne Barcelone,
- Shanghai Jiaotong University, Tsinghua University, Chine
- Colorado School of Mines, USA
- Hanoi University of Technology, Vietnam.
- Ecole Supérieure Pédagogique et Technologique d’Athènes, Grèce
- ENIG Gabes, ENIS de Tunis, Tunisie.

<table>
<thead>
<tr>
<th>Chercheurs invités</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPI</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>MME</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>SETE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TN</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>

Tableau 16 : chercheurs invités dans le pôle CSEE

- Enfin, un enseignant-chercheur (E. Monmasson) a été invité pour 6 mois à l’université de Valence.
<table>
<thead>
<tr>
<th>type</th>
<th>Acronyme</th>
<th>Nor ou thème du projet</th>
<th>Références</th>
<th>début</th>
<th>fin</th>
<th>montant HT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANR</td>
<td>EVA</td>
<td>EntomophèrenVolant Autonome</td>
<td>ANR-2008-CORD-007-05</td>
<td>15/12/08</td>
<td>14/12/13</td>
<td>110 864 €</td>
</tr>
<tr>
<td>ANR</td>
<td>CETI</td>
<td>Chaudière Electro Thermique Intégré</td>
<td>ANR-08-BLAN-0118-01</td>
<td>01/01/09</td>
<td>31/12/12</td>
<td>203 284 €</td>
</tr>
<tr>
<td>ANR</td>
<td>Micro-MANIP</td>
<td>Micromagnétisme : Mathématiques Appliquées et Nouvelles Interactions Physiques</td>
<td>ANR-08-BLAN-0199-02</td>
<td>01/09/09</td>
<td>31/12/12</td>
<td>62 000 €</td>
</tr>
<tr>
<td>ANR</td>
<td>CONCIGI_HT</td>
<td>Convertisseur alternatif-continu Compact et à Isolément Galnanique Intégré Haute Tension</td>
<td>ANR-08-VTT-013-02</td>
<td>30/06/09</td>
<td>31/12/12</td>
<td>132 000 €</td>
</tr>
<tr>
<td>ANR</td>
<td>FIDEA</td>
<td>Fiabilité et Diagnostic des Composants Electroniques de Puissance pour application Automobiles</td>
<td>ANR-2010-VTT-001-06</td>
<td>01/12/10</td>
<td>30/11/13</td>
<td>207 746 €</td>
</tr>
<tr>
<td>ANR</td>
<td>REC-EM</td>
<td>Récupération d'énergie électromagnétique</td>
<td>ANR-2010-BLAN-0906-03</td>
<td>01/01/11</td>
<td>31/12/13</td>
<td>94 264 €</td>
</tr>
<tr>
<td>ANR</td>
<td>E-CEM</td>
<td>Compatibilité électromagnétique de systèmes de puissance</td>
<td>ANR-2010-VPTT-013-05</td>
<td>03/01/11</td>
<td>02/01/14</td>
<td>211 992 €</td>
</tr>
<tr>
<td>ANR</td>
<td>MINAFC</td>
<td>Céramiques Nanostructurées de Ferrites pour hyperfréquences de la recherche fondamentales verss les dispositifs intégrés</td>
<td>ANR-2010-INTB-907-03</td>
<td>01/04/11</td>
<td>31/03/14</td>
<td>83 415 €</td>
</tr>
<tr>
<td>ANR</td>
<td>ALUARMé</td>
<td>Elaboration et caractérisation de matériaux de type architecturé aluminium-fer en vue de leur industrialisation</td>
<td>ANR-11-EMMA-018-01</td>
<td>01/11/11</td>
<td>31/10/13</td>
<td>88 310 €</td>
</tr>
<tr>
<td>ANR</td>
<td>e-MECA</td>
<td>electro-Mécanique Embarquée à Compacité Améliorée</td>
<td>ANR-11-VPTT-008-02</td>
<td>01/12/11</td>
<td>30/11/14</td>
<td>302 211 €</td>
</tr>
<tr>
<td>ANR</td>
<td>QUALIPHE</td>
<td>Qualité, lissage et Intégration au réseau de la production des Houlogénérateurs électriques directs.</td>
<td>ANR-2011-PRGE-013-01</td>
<td>01/03/12</td>
<td>28/02/15</td>
<td>221 557 €</td>
</tr>
<tr>
<td>financeurs</td>
<td>Types</td>
<td>Références</td>
<td>Thème du projet</td>
<td>Types commentaires</td>
<td>début</td>
<td>Fin</td>
</tr>
<tr>
<td>------------------------</td>
<td>------------</td>
<td>--------------------------------</td>
<td>--</td>
<td>--------------------------------</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td>FUI OSEO Innovation</td>
<td>Institutionnel</td>
<td>F1105025 Z "e-LIFT3"</td>
<td>Projet d'électrification d'une distribution variable à trois degrés de liberté pour moteur essence</td>
<td>Contrat d'aide FUI</td>
<td>01/03/11</td>
<td>31/12/14</td>
</tr>
<tr>
<td>FUI OSEO Innovation</td>
<td>Institutionnel</td>
<td>F1110034 M "SEISME"</td>
<td>Simulation de l'Emission et de l'Immunité des Systèmes et des Modules Electroniques - Compatibilité ElectroMagnétique</td>
<td>Contrat d'aide FUI</td>
<td>01/03/11</td>
<td>31/03/14</td>
</tr>
<tr>
<td>FUI Sephora</td>
<td>Institutionnel</td>
<td>Pilotage : Hispano-Suiza</td>
<td>Smart EMA For Operations in Rough Atmospheres (180 °C)</td>
<td>Contrat d’aide FUI</td>
<td>01/12/07</td>
<td>01/12/11</td>
</tr>
<tr>
<td>C.E.E.</td>
<td>Institutionnel</td>
<td>NMP3-SL-2008-214864 "SSEEC"</td>
<td>Solid State Energy Efficient Cooling</td>
<td>7th PCRD - Collaborative Project</td>
<td>01/10/08</td>
<td>30/09/11</td>
</tr>
<tr>
<td>C.E.E.</td>
<td>Institutionnel</td>
<td>FP7-NMP-2012-SMALL-6 "DRREAM"</td>
<td>Drastically reduced use of rare earths in applications of magnetocalorics</td>
<td>7th PCRD - Collaborative Project</td>
<td>01/01/13</td>
<td>31/12/15</td>
</tr>
<tr>
<td>CNES</td>
<td>Institutionnel</td>
<td>60026- R&T Cde 4500022816</td>
<td>Prestation</td>
<td></td>
<td>30/04/08</td>
<td>30/11/08</td>
</tr>
<tr>
<td>D.G.E.</td>
<td>Institutionnel</td>
<td>08.2.93.0486</td>
<td>Convention de soutien de l'Etat</td>
<td></td>
<td>01/09/08</td>
<td>30/06/12</td>
</tr>
<tr>
<td>CNES</td>
<td>Institutionnel</td>
<td>60029- R&T Cde 4500027928</td>
<td>Développement d'un convertisseur d'alimentation d'un transformateur piezo électrique et optimisation de la fonction contrôle</td>
<td>Prestation</td>
<td>31/07/09</td>
<td>30/06/10</td>
</tr>
<tr>
<td>D.G.E.</td>
<td>Institutionnel</td>
<td>SIC_HT2 08.2.93.0486</td>
<td>SIC_HT2</td>
<td>Contrat d'aide FUI</td>
<td>01/09/08</td>
<td>30/06/12</td>
</tr>
<tr>
<td>Région IdF Pôle "SYSTEM@TIC" et "MOVEO"</td>
<td>Région</td>
<td>I-09-2163/R / O2M</td>
<td>Outils de Modélisation Mécatronique</td>
<td>Convention</td>
<td>01/11/09</td>
<td>31/04/11</td>
</tr>
<tr>
<td>Région IdF Pôle ASTech</td>
<td>Région</td>
<td>I-10-2348/R "GALION-MEMPHIS"</td>
<td>Convention</td>
<td></td>
<td>01/09/10</td>
<td>31/08/13</td>
</tr>
<tr>
<td>financeurs</td>
<td>Types</td>
<td>Références</td>
<td>Nom ou thème</td>
<td>Types commentaires</td>
<td>début</td>
<td>fin</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------</td>
<td>---------------------</td>
<td>--</td>
<td>-------------------</td>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>FUI OSEO Innovation</td>
<td>Institutionnel</td>
<td>F1004055 Z "3MT"</td>
<td>Matériaux Magnétiques pour Machines et Transformateurs</td>
<td>Contrat d'aide FUI</td>
<td>21/07/10</td>
<td>20/01/14</td>
</tr>
<tr>
<td>ARCUS VIETNAM</td>
<td>Institutionnel</td>
<td></td>
<td>ARCUS-V</td>
<td>Convention de reversion</td>
<td>01/07/11</td>
<td>31/03/14</td>
</tr>
</tbody>
</table>

CSEE - financements LaSIPS 2012

<table>
<thead>
<tr>
<th>ACTIVITÉ</th>
<th>POSTE BUDGETAIRE</th>
<th>Montant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projet PIZOFLAG-Petit matériel</td>
<td>Autres dépenses</td>
<td>1 500 €</td>
</tr>
<tr>
<td>Projet Recherche AlumMagné</td>
<td>Frais de personnel</td>
<td>40 000 €</td>
</tr>
<tr>
<td>Projet Recherche AlumMagné</td>
<td>Autres dépenses</td>
<td>9 000 €</td>
</tr>
<tr>
<td>Projet Imagerie des semi-conducteurs</td>
<td>Frais de personnel</td>
<td>36 000 €</td>
</tr>
</tbody>
</table>

Projet FARMAN - Montant

<table>
<thead>
<tr>
<th>Année</th>
<th>Projet FARMAN</th>
<th>Montant</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>EPASF</td>
<td>44 000 €</td>
</tr>
<tr>
<td></td>
<td>MicroNanoMap</td>
<td>27 000 €</td>
</tr>
<tr>
<td></td>
<td>EMOTICON</td>
<td>10 000 €</td>
</tr>
<tr>
<td>2009</td>
<td>EVMC</td>
<td>20 000 €</td>
</tr>
<tr>
<td>2010</td>
<td>BOOST</td>
<td>20 000 €</td>
</tr>
<tr>
<td>2011</td>
<td>COUPLETT</td>
<td>24 000 €</td>
</tr>
<tr>
<td>2012</td>
<td>BOOST2</td>
<td>12 000 €</td>
</tr>
<tr>
<td></td>
<td>ICE-T</td>
<td>12 000 €</td>
</tr>
<tr>
<td></td>
<td>MIOA</td>
<td>12 000 €</td>
</tr>
<tr>
<td>2013</td>
<td>FORM</td>
<td>2 000 €</td>
</tr>
</tbody>
</table>
Liste des principaux contrats sur financement privé du pôle CSEE

<table>
<thead>
<tr>
<th>financeurs</th>
<th>Types</th>
<th>Références</th>
<th>Thèmes</th>
<th>Types commentaires</th>
<th>début</th>
<th>fin</th>
<th>montant HT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centrale Innovation</td>
<td>Industriel</td>
<td>93-09-2017</td>
<td>Composants d’étages de pilotage en TECHnologie SOI pour la haute température</td>
<td>Prestation</td>
<td>31/12/09</td>
<td>30/12/11</td>
<td>45 000 €</td>
</tr>
<tr>
<td>FRAE</td>
<td>Fondation</td>
<td>"COTECH"</td>
<td>Filtrage Electromatiques et Matériaux pour l'Intégration en Aéronautique</td>
<td>Contrat de soutien FRAE</td>
<td>01/10/08</td>
<td>30/09/11</td>
<td>10 714 €</td>
</tr>
<tr>
<td>FRAE</td>
<td>Fondation</td>
<td>2008-05-31 "FEMINA"</td>
<td>Composants magnétiques monolithiques de puissance</td>
<td>Contrat de bourse de doctorat</td>
<td>01/10/12</td>
<td>31/09/13</td>
<td>150 000 €</td>
</tr>
<tr>
<td>FONDATION EADS</td>
<td>Fondation</td>
<td></td>
<td>Eco-conception des entraînements mécaniques</td>
<td>Accord de collaboration</td>
<td>01/07/08</td>
<td>31/12/09</td>
<td>10 000 €</td>
</tr>
<tr>
<td>SOMFY Phase I</td>
<td>Industriel</td>
<td></td>
<td>Utilisation de ruban amorphe dans les transformateurs de Distribution publique</td>
<td>Encadrement thèse</td>
<td>01/03/09</td>
<td>29/02/12</td>
<td>36 000 €</td>
</tr>
<tr>
<td>EDF R&D</td>
<td>Industriel</td>
<td>8610-AAP-5910055095</td>
<td>Techniques et méthodologies de validation par la simulation des liens multi-gigahertz des cartes électroniques haute densité</td>
<td>Contat de collaboration CIFRE</td>
<td>01/02/10</td>
<td>31/01/13</td>
<td>30 000 €</td>
</tr>
<tr>
<td>SOMFY Phase II</td>
<td>Industriel</td>
<td></td>
<td>Eco-conception des entraînements mécaniques</td>
<td>Accord de collaboration</td>
<td>01/01/10</td>
<td>30/06/10</td>
<td>5 000 €</td>
</tr>
<tr>
<td>THALES COMMUNICATION S.A.</td>
<td>Industriel</td>
<td></td>
<td>Optimisation d'une machine synchrone à excitation bobinée statique pour application génératrice de vitesse variable et courant continu de group électrogène</td>
<td>Collaboration de recherche</td>
<td>25/10/10</td>
<td>24/10/13</td>
<td>70 500 €</td>
</tr>
<tr>
<td>LEROY SOMER</td>
<td>Industriel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unité</td>
<td>Type</td>
<td>Numéro de contrat</td>
<td>Titre du projet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>-------------------</td>
<td>-----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDF</td>
<td>Industriel</td>
<td>8610/BVW/4300245395</td>
<td>Analyse de viabilité des données de puissance et de vent en vue de l'introduction de moyens de stockage d'énergie dans le production éolienne d'électricité</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDF</td>
<td>Industriel</td>
<td>8610-AAP-5910087467</td>
<td>Méthodologie d'optimisation du dimensionnement et de la gestion du stockage d'énergie intégré à la production éolienne</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERTE</td>
<td>Industriel</td>
<td>8610-AAP-5910087467</td>
<td>Caractérisation des composants magnétiques sous contraintes spécifiques : application aux convertisseurs d'électronique de puissance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S2M</td>
<td>Industriel</td>
<td>8610-AAP-5910087467</td>
<td>Etudes des ouplings sur un système uniaxe d'un palier magnétique auto-détecteur</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THALES AVIONICS SYSTEMS</td>
<td>Industriel</td>
<td>8610-AAP-5910087467</td>
<td>Etude d'interrupteurs en carbure de silicium et potentiel d'utilisation dans les convertisseurs aéronautiques</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RENAULT SAS</td>
<td>Industriel</td>
<td>8610-AAP-5910087467</td>
<td>Etude et diagnostique des courants de fuites dans les machines électriques</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REGIENOV</td>
<td>Industriel</td>
<td>Contrat SATIE/2008/001</td>
<td>Modélisation des phénomènes CEM conduits et rayonnés d'une chaine de traction électrique du type Kangoo Electrique</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Partie D : Annexes de SATIE

Section des unités de recherche

D 6-58
D 6.2. Réalisations du pôle SIAME

D 6.2.a. Production scientifique du pôle SIAME

a. Articles dans des revues internationales (ACL)

T. Meni, E. Chaumette, P. Larzabal “On versatility of constrained CRB for system analysis” accepted for publication in IEEE Trans on Aerospace and electronic system.

b. Articles dans des revues nationales (ACLN)

Partie D : Annexes de SATIE

C. Communications internationales avec actes dans un congrès international

Partie D : Annexes de SATIE

B. D. Ciubotaru, M. Staroswiecki, and N. Christov, “Extended Hybrid Technique for Control Redesign with Stabilization and Correction,” in American Control Conference (ACC), 2013, no. WeA15.5.

d. Invitations dans un congrès international

Communication avec actes dans un congrès national

Partie D : Annexes de SATIE

f. **Ouvrages scientifiques**

g. **Autres publications (y compris vulgarisation et diffusion du savoir)**

Section des unités de recherche

Partie D : Annexes de SATIE

D 6-80

D 6.2.b. Liste des brevets du pôle SIAME

Indice de rayonnement et d’attractivité économiques du pôle SIAME

Le pôle SIAME, à travers ses membres, participe à plusieurs actions collaboratives en recherche. Dans la perspective du déménagement de l'ENS Cachan sur le plateau de Saclay en 2018 et dans le cadre du LabEx LaSIPS, une attention particulière est donnée aux collaborations avec des laboratoires de la future université Paris-Saclay d’une part ; dans le cadre du LabEx PATRIMA et de l’EquiPex PATRIMEX d’autre part. Nous donnons ici une liste des collaborations scientifiques nationales et internationales ayant conduit à des publications ou à des contrats communs.

a. Collaborations nationales

- ONERA : collaboration et publications communes avec Jean-Philippe Ovarlez et Eric Chaumette dans le cadre de l'estimation robuste, de la théorie de la détection et de l'étude de performances.
- Laboratoire SONDRA (Supélec) : collaboration avec Frédéric Pascal sur le thème de l'estimation robuste et de la théorie de la détection, et avec Laetitia Thirion-Lefèvre pour les détecteurs à sous-espace en SAR.
- Université Bordeaux I, INPL Nancy, LAAS, Université Paris Sud 11, CNES, EADS, et Marconi Space dans le cadre du contrat SIRASAS (Stratégies Innovantes et Robustes pour l’Automatisation des Systèmes Aéronautiques et Spatiaux). La contribution du groupe MOSS porte sur la conception de systèmes tolérants aux fautes.
- GIPSA-Lab Département Automatique, INPG-UJF-CNRS sur le thème de l'évaluation de la tolérance aux fautes.
- LIMSI (UPR CNRS associé à l’université Paris Sud) sur le thème du contrôle des écoulements en mécanique des fluides.
- Dans le cadre du projet ANR (programme Blanc) CHAPERSOA, collaboration avec l’IOGS (coordinateur du projet), de l’ONERA et du LAOG (Lab. d’Astrophysique de l’Observatoire de Grenoble) sur le thème de la commande robuste en optique adaptative.
- LSS (CNRS-Supélec), collaboration avec S. Marcos, A. Renaux, R. Boyer sur les thèmes de l'estimation en Radar et des bornes associés.
- CRAN (CNRS-Université de Lorraine), collaboration autour du thème des équations de Riccati généralisées et de la théorie des jeux.
- LIST (CEA), collaboration portant sur la télé-opération des structures maîtres-esclaves).
- GREMAN – UMR 7347 (Groupe de Recherche En Matériaux, microélectronique, Acoustique et Nanotechnologies, Université de Tours), collaboration autour de la thématique acoustique non-linéaire,
- IEMN (Institut d'Electronique, de Micro-électronique et de Nanotechnologie, ISEN Lille),
- LOMC – UMR 6294 (Laboratoire Ondes et Milieux Complexes, Le Havre),
- GEC – EA 4506 (Géosciences Environnement de Cergy, Cergy-Pontoise), collaboration pour la conservation et restauration du patrimoine bâti
- LRMH (Laboratoire de Recherche des Monuments Historiques, Champs sur Marne) collaboration liée au patrimoine culturel matériel
- Centre de Recherche sur la Conservation des Collections, collaboration liée au patrimoine culturel matériel
- Laboratoire de Recherche et de Restauration du Musée de la Musique, collaboration liée au patrimoine culturel matériel
- Unité de Recherche en Chimie Organique et Macromoléculaire (URCOM) Université Le Havre, pour l'évaluation sensorielle appliquée à l'industrie cosmétique
- SOSCO de l'Université de Cergy-Pontoise, collaboration dans le cadre d'un projet portant sur le diagnostic moléculaire et d'un projet SESAME financé par la région (88 k€).

b. Collaborations internationales

- Université de Campinas (UNICAMP), São Paulo, Brésil : collaboration avec le laboratoire DSPCom (J-M. Romano, R. Krummenauer, R. Suyama) sur les thèmes du traitement d'antenne, de la localisation des sources et de la répartition optimale de la puissance dans les réseaux de télécommunications. Cette collaboration est désormais soutenue financièrement par un programme CAPES-COFECUB (Ph 772-13) ayant pour titre « Estimation paramétrique robuste de systèmes linéaires sous déterminés par la technique du compressive sensing ».
- Chalmers University of Technology, Suède : collaboration avec Mats Viberg autour de la résolution en estimation en présence d'erreurs de modèle.
- FGAN, Allemagne (Forschungsgesellschaft für Angewandte Naturwissenschaften) : collaboration avec Ulrich Nickel sur le thème du traitement Radar mono-pulse.
- Universität Innsbruck, Institut für Mathematik, Autriche : collaboration avec U. Oberst sur le thème de l'analyse algébrique appliquée à la théorie des systèmes.
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Chine : collaboration sur la conception d'observateurs adaptatifs et la reconfiguration de systèmes tolérants aux fautes.
- Polytechnic University of Bucharest, Roumanie : collaboration autour de deux thèmes, l'accommodation pour la conception de systèmes tolérants aux fautes et la résolution des équations de Riccati non symétriques.
- National Technical University of Athens, Grèce : collaboration avec G.P. Papavassilopoulos sur le thème de la théorie des jeux et des équations de Riccati généralisées. Le Professeur G.P. Papavassilopoulos a bénéficié d'un poste de professeur invité à l'ENS Cachan pendant un mois (juillet 2012).
- Ecole Nationale d'Ingénieurs de Tunis : cette collaboration a été menée conjointement avec E. Monmasson du groupe SETE du SATIE et la participation de RTE R&D. Les sujet développés avec les partenaires tunisiens
Section des unités de recherche

Partie D : Annexes de SATIE

(I. Slama, K. Ben-Kilani, M. El Heuch) portaient sur la commande des convertisseurs de puissance dans un contexte réseau où le raccordement de la production éolienne et les liaisons en courant continu ont été considérés.

- Accord cadre entre l'Université de Tucson en Arizona et l'ENS Cachan, signé en janvier 2004 : co-encadrement 4 chercheurs (en PhD) de l'université d'Arizona dont l'un a passé un an au SATIE. Invitation du professeur T. Kundu sur plusieurs années à l'ENS, durant un mois ou deux, pour travailler sur les applications de la méthode DPSM. (Dominique Placko)

- Laboratory of Modern Acoustics - Institute of Acoustics (Nanjing University, China).

- Université de Caroline du sud, Matthieu GRESIL, laboratoire du professeur Victor Giurgiutiu, le LAMSS, utilisation de la méthode DPSM.

- Université de Cincinnati professeur Peter Nagy, département Aerospace collaboration en 2012 à la réalisation d'un ouvrage collectif publié aux Etats Unis par CRC Press.

- Collaboration dans le cadre d'accords ERASMUS avec University of Chemical Technology and Metallurgy (University of Sofia, Bulgaria) (depuis 2009) : (6 échanges de stagiaires en Master) et d'un Partenariat Hubert Curien (PHC) franco-bulgare, financement EGIDE (RILA - 2011) concernant l'étude de la corrosion bactérienne et biocapteurs (Invitation en 2009-2010 du Dr. D. Danalev 9 mois, du Pr. L. Yotova 3 venues par an, PhD et MCF invitée 2013 D. Marinkova) depuis 2009

c. Rayonnement et attractivité académiques

La reconnaissance scientifique de l'activité des membres des groupes fait qu'ils sont souvent sollicités pour participer à des instances nationales ou internationales. Sur la période janvier 2008-juin 2013, les principales participations des membres des groupes à la vie académique sont données dans ce paragraphe. Déjà pour groupe MOSS, on peut citer les participations à plusieurs comité d'experts de l'AERES, aux GDR ISIS et MACS, à l'évaluation de projets ANR, l'organisation de session spéciale dans des congrès (IFAC WC 2008, CAMSAP 2011, SAM 2012, IFAC CAO 2012, Eusipco 2013, …) ainsi que plusieurs participations aux comités scientifiques de programme de congrès nationaux et internationaux. Pour le groupe Instrumentation & Imagerie, notons des responsabilités éditoriales, la coordination scientifique des 2 LabEx et d'un EquipEX, la pérennisation du Colloque Interdisciplinaire en Instrumentation (C2I) qui a lieu tous les 3 ans. Parmi les autres activités liées à la recherche qui participent ou ont participé au rayonnement des groupes et du laboratoire SATIE, on peut citer :

- Membre élu en section 07 du Comité National de la Recherche Scientifique (CoNRS) jusqu'à fin 2008 (C. Durieu).

- Membre élu au CNU 61ème section (P. Forster)

- Invitations pour 3 conférences plénières à 3 congrès internationaux dédiés au diagnostic et aux systèmes tolérants aux fautes (Italie, Maroc, Algérie) en 2010 (M. Stasowski).

- General vice chair de la conférence internationale VALUETOOLS 2011 (5th International ICST Conference on Performance Evaluation Methodologies and Tools), organisée à l'ENS de Cachan, 16-20 mai 2011 (P. Larzabal).

- Professeur invité pendant 3 mois en 2009 à l'université de Campinas (UNICAMP), São Paulo, Brésil, avec un financement de la FAPESP (Fondation pour le soutien de la recherche de l'État de São Paulo). Collaboration sur le thème de l'apport de la théorie des jeux à quelques problèmes en télécommunications (H. Abou-Kandil).

- Invitation pour une série de conférences et de séminaires à l'université de Sfax, Tunisie en décembre 2011 et 2012 (H. Bourlès).

- Invitation pour une série de séminaires en mars 2012 à la « National Technical University of Athens », Grèce, sur le thème de la théorie des jeux. Financement programme Erasmus (H. Abou-Kandil).

- Chargé de mission à l'UCP de la valorisation de la recherche (2007-2012) ; Coordinateur scientifique des LabEx et EquipEX LASIPS (B), PATRIMA (A+), PATRIMEX (A+), de la SATT IdFinnov, de l'IEED VEDECOM (Véhicules décarbonés communicants), et de la PFMI COSMETOMIQUE. (Stéphane Serfaty)

- Vice-Président du Conseil Scientifique de l'Université (depuis mai 2012) (Stéphane Serfaty)

Membre élu au CNU 63ème section (J.-Y. Le Huérou)

Création du Colloque Interdisciplinaire en Instrumentation (C2I) en 1998 colloque triennal la cinquième édition a été organisée au Mans en janvier 2010, sa sixième édition a été organisée à Lyon en janvier 2013 Les actes sont publiés aux éditions Hermes, en moyenne 100 papiers sont présentés pour 150 participants. Des papiers sont également sélectionnés et republiés dans des revues EPJ AP, I2M, REE. (Dominique Placko)

Membre du comité scientifique de la conférence internationale SPIE ‘NDE’ : Conférence sur l'évaluation non destructive et le contrôle santé des matériaux, San-Diego, de mars 2002 à mars 2012. (Dominique Placko)

Membre du GAP SUS de la Société Française d’Acoustique (SFA), invité puis élu 2008-2012, membre élu et responsable financier depuis 2013 (Nicolas Wilkie-Chancellier)

Membre permanent du comité scientifique de Cosmetic Valley (labélation) depuis 2008 (Stéphane Serfaty)

Membre élu des CA VEDECOM, SATT idfInnov, du pôle Cosmetic Valley depuis 2010 (Stéphane Serfaty)

Mise en place de la Société SATT IdfInnov (Société d'Accélération de Transfert de Technologie, 2012) ; Aujourd'hui membre du conseil scientifique. (Stéphane Serfaty)

Participation à la mise en place de l'IEED VEDECOM ; Membre du CA et de la commission de valorisation, impliquant la filière automobile. (Stéphane Serfaty)

Porteur scientifique et pilotage de la PFMI Cosmétomique : Mise en place du pôle caractérisation et optimisation impliquant le pôle Cosmetic Valley (C. Masson et JL Ansel, le Synchrotron Soleil (2011-2020, JP. Samama, M. Bessière, J. Daillant, PFMI Cosmetomique), Bio-EC (E. Lati), l'UCP (Stéphane Serfaty).

Présidence du Club "Métrieologie" de la SEE depuis l'année 2000 (Dominique Placko).

Vice-présidence de la commission A "Métrieologie Electromagnétique" du CNFRS (URSI France) Elu en février 2010 pour trois ans (Dominique Placko).
Liste des principaux contrats institutionnels sur financement public du pôle SIAME D 6.2.d.

<table>
<thead>
<tr>
<th>Type</th>
<th>Acronyme</th>
<th>Thématique</th>
<th>Références</th>
<th>début</th>
<th>fin</th>
<th>montant HT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANR</td>
<td>MECANO</td>
<td>Multi electrochemical sensor arrayed platform for screening biological markers of neurological lysosomal storage and acute brain injuries</td>
<td>ANR-08-PCVI-0018-02</td>
<td>01/01/09</td>
<td>31/12/11</td>
<td>214 000 €</td>
</tr>
<tr>
<td>ANR</td>
<td>CHAPERSOA</td>
<td>Commande haute performance pour les systèmes d'optique adaptavie</td>
<td>ANR-BLAN-0162-03</td>
<td>01/10/09</td>
<td>30/09/13</td>
<td>167 000 €</td>
</tr>
<tr>
<td>ANR</td>
<td>COMONSENS</td>
<td>Modulation contrôlée et réversible de la réponse optique des assemblages de nanoparticules de métaux nobles pour la biodétection en microfluidique</td>
<td>ANR-2010-JCJC-1005-1</td>
<td>12/11/10</td>
<td>11/04/14</td>
<td>191 000 €</td>
</tr>
<tr>
<td>ANR</td>
<td>Nanopulsebiochip</td>
<td>Conception d’une puce pour la nanoporation de cellules vivantes, et visualisation des effets de ces nano-impulsions de champ électrique sur les membranes cellulaire par microscopie DRASC</td>
<td>ANR-2008 08-NANO-024</td>
<td>2009</td>
<td>2012</td>
<td>150 000 €</td>
</tr>
<tr>
<td>ANR</td>
<td>MicroHepaRetax</td>
<td>Co-culture de cellules de foie et de rein pour des applications en toxocologie</td>
<td></td>
<td>2008</td>
<td>2010</td>
<td>75 000 €</td>
</tr>
<tr>
<td>ANR</td>
<td>Molimen</td>
<td>Molecules and light in individual metal nanostructures</td>
<td>ERANet : EU/ANR</td>
<td>2009</td>
<td>2010</td>
<td>80 000 €</td>
</tr>
<tr>
<td>Financeurs</td>
<td>Types</td>
<td>Références</td>
<td>Titres ou Thèmes</td>
<td>Types commentaires</td>
<td>début</td>
<td>fin</td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
<td>------------</td>
<td>-----------------</td>
<td>-------------------</td>
<td>-------</td>
<td>----</td>
</tr>
<tr>
<td>PEPS INSIS</td>
<td>Institutionnel</td>
<td>COSFY</td>
<td>Subvention CNRS</td>
<td>2011</td>
<td>2012</td>
<td>18 000 €</td>
</tr>
<tr>
<td>C.E.E.</td>
<td>Europe</td>
<td>NoE 216715 "NEWCOM++"</td>
<td>NETwork of Excellence in Wireless COMMunication</td>
<td>7th PCRD - Network of Excellence</td>
<td>01/01/08</td>
<td>31/12/10</td>
</tr>
<tr>
<td>C.E.E.</td>
<td>Europe</td>
<td>NEWCOM#</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIGITEO</td>
<td>RTRA</td>
<td>2009-44D TMu2S2M</td>
<td>Traitement Multidimensionnel du Signal pour Systèmes Multicapteurs Multicomposants</td>
<td>Convention de financement</td>
<td>01/11/09</td>
<td>31/10/13</td>
</tr>
<tr>
<td>DIGITEO</td>
<td>RTRA</td>
<td>2011-067D COSPERFL2</td>
<td>Commande PERformante de Systèmes Fluides Incertains</td>
<td>Convention de financement</td>
<td>01/09/11</td>
<td>31/08/14</td>
</tr>
<tr>
<td>OSEO</td>
<td>Institutionnel</td>
<td>F1211020 Z</td>
<td>Ligne «hyaluronic like » fonctionalisée issue de microalgues</td>
<td>FUI Blue-Hyal2</td>
<td>14/11/13</td>
<td>14/05/16</td>
</tr>
<tr>
<td>ANR</td>
<td>Equipex</td>
<td>ANR-11-EQX-0034 Patrimex</td>
<td>Plateforme dédiée à la caractérisation, la conservation et la restauration du patrimoine culturel</td>
<td>Projet d’investissements d’avenir ANR 2011</td>
<td>01/09/12</td>
<td>31/08/18</td>
</tr>
<tr>
<td>Sesame</td>
<td>Région</td>
<td>Plate-forme MoDeLS (Molecular Detection in Life Sciences)</td>
<td>Vibromètre Laser haute résolution</td>
<td>Région</td>
<td></td>
<td>2013</td>
</tr>
<tr>
<td>Financeurs</td>
<td>Types</td>
<td>Références</td>
<td>Titre ou thème</td>
<td>Types commentaires</td>
<td>Début</td>
<td>fin</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------------</td>
<td>-------------------</td>
<td>--</td>
<td>--------------------</td>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>FUI OSEO Innovation</td>
<td>Institutionnel</td>
<td>F1004055 Z "3MT"</td>
<td>Matériaux Magnétiques pour Machines et Transformateurs</td>
<td>Contrat d'aide FUI</td>
<td>21/07/10</td>
<td>20/01/14</td>
</tr>
<tr>
<td>ARCUS VIETNAM</td>
<td>Institutionnel</td>
<td></td>
<td>ARCUS-V</td>
<td>Convention de reversement</td>
<td>01/07/11</td>
<td>31/03/14</td>
</tr>
</tbody>
</table>

SIAME - financements LaSIPS 2012

<table>
<thead>
<tr>
<th>ACTIVITE</th>
<th>POSTE BUDGETAIRE</th>
<th>Montant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projet IMP-CELL-Consomables</td>
<td>Autres dépenses</td>
<td>6 000 €</td>
</tr>
<tr>
<td>Projet IMP-CELL-Post-doc</td>
<td>Frais de personnel</td>
<td>48 000 €</td>
</tr>
<tr>
<td>Projet SIMULOS-Matériel</td>
<td>Equipement</td>
<td>10 000 €</td>
</tr>
<tr>
<td>Projet SIMULOS-Petit matériel</td>
<td>Autres dépenses</td>
<td>10 000 €</td>
</tr>
<tr>
<td>Projet PRIME</td>
<td>Equipement</td>
<td>10 000 €</td>
</tr>
<tr>
<td>Projet PRIME</td>
<td>Autres dépenses</td>
<td>6 700 €</td>
</tr>
</tbody>
</table>
SIAME - financements PATRIMA
PATRImoines MAtériels : Savoirs, Patrimonialisation, Transmission.

Techniques de restauration, conservation, technologie de l’information, imagerie culturelle, histoire de l’art et de la culture

<table>
<thead>
<tr>
<th>Année</th>
<th>Poste budgétaire</th>
<th>Montant attribué à ce jour</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>Frais de personnel</td>
<td>35 000 €</td>
</tr>
<tr>
<td>2013</td>
<td>Frais de personnel</td>
<td>92 500 €</td>
</tr>
</tbody>
</table>

PROJET FARMAN

<table>
<thead>
<tr>
<th>Année</th>
<th>PROJET</th>
<th>Montant</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>TOAST</td>
<td>14 000 €</td>
</tr>
<tr>
<td>2010</td>
<td>IMADEF</td>
<td>20 000 €</td>
</tr>
<tr>
<td>2013</td>
<td>INVERSYM</td>
<td>10 000 €</td>
</tr>
<tr>
<td></td>
<td>DECORR</td>
<td>10 000 €</td>
</tr>
</tbody>
</table>
Années de Financement IDA

<table>
<thead>
<tr>
<th>Année</th>
<th>Nom du projet</th>
<th>Financement</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>SENSO</td>
<td>8 000 €</td>
</tr>
<tr>
<td>2010-2011</td>
<td>Tip-Trap</td>
<td>12 000 €</td>
</tr>
<tr>
<td>2010-2011</td>
<td>RIMBO</td>
<td>10 000 €</td>
</tr>
<tr>
<td>2012</td>
<td>GuideCells</td>
<td>7 997 €</td>
</tr>
<tr>
<td>2013</td>
<td></td>
<td>4 030 €</td>
</tr>
</tbody>
</table>

Financeurs

<table>
<thead>
<tr>
<th>Financeurs</th>
<th>Types</th>
<th>Titre</th>
<th>Thème</th>
<th>Début</th>
<th>fin</th>
<th>montant</th>
</tr>
</thead>
<tbody>
<tr>
<td>NanoSciences Ile de France</td>
<td>Institutionnel</td>
<td>FUSCELLCHIP-NBS</td>
<td>Dispositif nanostructuré pour la fusion de cellule en vue de l’immunothérapie</td>
<td>2011</td>
<td>2013</td>
<td>60 000 €</td>
</tr>
<tr>
<td>Pres Universud</td>
<td>Institutionnel</td>
<td>FUSCELL</td>
<td>Réalisation d’un biomicrosystème pour la fusion cellulaire en vue de l’immunothérapie du cancer</td>
<td>2009</td>
<td></td>
<td>57 000 €</td>
</tr>
</tbody>
</table>

Partie D : Annexes de SATIE

D 6-90
<table>
<thead>
<tr>
<th>Projet</th>
<th>Thème ou titre</th>
<th>Début</th>
<th>fin</th>
<th>montant</th>
</tr>
</thead>
<tbody>
<tr>
<td>JST/CNRS</td>
<td>Robotized high throughput proteins on a chip</td>
<td>2007</td>
<td>2010</td>
<td>90 000 €</td>
</tr>
<tr>
<td>CNRS</td>
<td>Interface Physique/chimie/bio</td>
<td>2009</td>
<td>2011</td>
<td>60 000 €</td>
</tr>
<tr>
<td>CNRS</td>
<td>Innovations thérapeutiques</td>
<td>2012</td>
<td>2014</td>
<td>40 000 €</td>
</tr>
</tbody>
</table>
Liste des principaux contrats sur financement privé du pôle SIAME

<table>
<thead>
<tr>
<th>Financeurs</th>
<th>Thème ou titre</th>
<th>Types commentaires</th>
<th>début</th>
<th>Fin</th>
<th>montant reçu à ce jour</th>
</tr>
</thead>
<tbody>
<tr>
<td>THALES COMMUNICATION S.A.</td>
<td>Radiolocalisation d'émetteurs à l'aide de stations multicapteurs séparées : Algorithmes et performances</td>
<td>Encadrement de recherche - CIFRE</td>
<td>22/02/10</td>
<td>31/01/13</td>
<td>30 000 €</td>
</tr>
<tr>
<td>Laboratoire SONDRA</td>
<td>Algorithmes d'imagerie SAR polarimétriques basés sur des modèles à sous espaces</td>
<td>Encadrement de recherche</td>
<td>2008</td>
<td>2010</td>
<td>36 000 €</td>
</tr>
<tr>
<td>Thalès Communications</td>
<td>Géolocalisation d'émetteurs par des techniques de traitement d'antennes dans un contexte de multitrajets</td>
<td>Encadrement de recherche</td>
<td>2012</td>
<td>2013</td>
<td>15 000 €</td>
</tr>
<tr>
<td>Laboratoire SONDRA</td>
<td>Estimation robuste de la matrice de covariance en traitement du signal</td>
<td>Encadrement de recherche</td>
<td>2009</td>
<td>2012</td>
<td>44 000 €</td>
</tr>
<tr>
<td>SIRASAS</td>
<td>Financé par la Fondation de Recherche pour l'Aéronotique et l'Espace : Conception de systèmes tolérants aux fautes</td>
<td>Contrat Marconi-EADS-Universités-SATIE</td>
<td>01/02/08</td>
<td>31/10/09</td>
<td>107 000 €</td>
</tr>
<tr>
<td>DGA-ONERA</td>
<td>Nouvelles formes d’onde Radar</td>
<td>Contrat de participation</td>
<td>2008</td>
<td>2009</td>
<td>100 000 €</td>
</tr>
<tr>
<td>SNECMA</td>
<td>Développement d'une méthode de la profondeur de fissures de fatigue pendant essais de fissuration</td>
<td>Prestation</td>
<td>01/04/10</td>
<td>31/03/11</td>
<td>21 000 €</td>
</tr>
<tr>
<td>RTE EDF</td>
<td>Développement de comparator cryogénique de courants très faible bruit pour la métrologie électrique quantique</td>
<td>Contrat de collaboration</td>
<td>07/02/11</td>
<td>06/02/14</td>
<td>27 000 €</td>
</tr>
<tr>
<td>LNE Développement</td>
<td>Modélisation de la chaîne de mesure de teneur en eau de sols fondée sur la réflectométrie temporelle</td>
<td>Contrat de collaboration</td>
<td>15/04/11</td>
<td>14/04/14</td>
<td>6 000 €</td>
</tr>
<tr>
<td>ANDRA</td>
<td>Mesure en laboratoire de la résistance aux sollicitations mécaniques lors de la polymérisation</td>
<td>Convention de partenariat - Recherche post-doctorale</td>
<td>15/04/11</td>
<td>31/07/12</td>
<td>11 000 €</td>
</tr>
<tr>
<td>RTE EDF</td>
<td>Contrat de collaboration</td>
<td>01/02/12</td>
<td>31/01/15</td>
<td>27 000 €</td>
<td></td>
</tr>
<tr>
<td>GIVAUDAN</td>
<td>Mesure en laboratoire de la résistance aux sollicitations mécaniques lors de la polymérisation</td>
<td>Prestation</td>
<td>01/03/13</td>
<td>31/08/13</td>
<td>5 000 €</td>
</tr>
<tr>
<td>BIC écriture 2000</td>
<td>Etude de la quantité de graisse sur pointes de stylos bille par ondes ultrasonores RF</td>
<td>Prestation</td>
<td>01/01/076</td>
<td>31/12/08</td>
<td>20 000 €</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>Billanco</td>
<td>Etude et optimisation d’un capteur de champ/courant innovant</td>
<td>Collaboration</td>
<td>2006</td>
<td>2008</td>
<td>60 000 €</td>
</tr>
<tr>
<td>Projet on TRAC 2</td>
<td>Elaboration d’une plateforme logicielle, pour la modélisation et le traitement de données pour les systèmes d’END multicapteurs CF et US</td>
<td>Collaboration</td>
<td>2007</td>
<td>2009</td>
<td>60 000 € (en 2008)</td>
</tr>
</tbody>
</table>
D 7. **Annexe 7 : Liste des thèses**

D 7.1. Liste des thèses soutenues sur la période Janvier 2008 à Juin 2013.

1. J.M. JARROUSSE « Conception d'un convertisseur DC/DC à très haute fréquence pour l'alimentation d'une cellule radar, contribution à son intégration. » Soutenance : Janvier 2008

10. Cyril RAVAT « Conception de multcapteurs à courants de Foucault et inversion des signaux associés pour le contrôle non destructif » Soutenance : 15 Décembre 2008

[18] Bertrand SELVA « Migration vers les hautes tensions de surface de bulles et de gouttes, applications à la microfluidique digitale » Soutenance : 20 Octobre 2009

[22] Alexandre AMEDEO « Intégrité de signal et bruits d’alimentation de cartes numériques pour des applications de télécommunication » Soutenance : Janvier 2010

[25] Antony LUCAS « Etude et mise au point de transformateurs de puissance large bande radiofréquences à partir de ferrites à faibles pertes et à basse température de frittage » Soutenance : Avril 2010

[26] Lâm duy NGUYEN « Contribution à l'étude d'un oscillateur opto-électronique micro-ondes : applications fondées sur une variation de sa fréquence » Soutenance : 17 Juin 2010

[27] G. PAILLOUX « Estimation Structurée de la Covariance du Bruit en Détectection Adaptative » Soutenance : Juin 2010

[29] Yaël THIAUX « Optimisation des profils de consommation pour minimiser les coûts économique et énergétique sur cycle de vie des systèmes photovoltaïques autonomes et hybrides - Evaluation de la technologie Li-ion » Soutenance : 8 Juillet 2010

[34] Julien NAVARRO « Nanoparticules d’or, argent et or-argent fonctionnalisées pour la diffusion résonante de la lumière et l’extinction de la fluorescence moléculaire en suspension colloïdale » Soutenance : 7 Décembre 2010

[36] Fabiano DE SOUZA CHAVES Contrôle de puissance opportuniste et égalisation robuste dans les réseaux de communication sans fil à l’aide d’outils de l’automatique et de la théorie des jeux Soutenance : 16 Décembre 2010

[37] Frédéric BRIGUI « Algorithmes d’imagerie SAR polarimétriques basés sur des modèles à sous-espaces » Soutenance : Décembre 2010

[38] Denis LABROUSSE « Amélioration des techniques d’estimation des perturbations conduites – Application à une chaine de traction de véhicule électrique » Soutenance : Décembre 2010

[39] Sylvain. PIETRANICO « Analyse de matériaux pour la modélisation des mécanismes de défaillance des modules électroniques de puissance » Soutenance : Décembre 2010

[41] Caroline HERVE « Imagerie multistatique pour le sonar passif » Soutenance : 21 Janvier 2011

[43] Amira MAALOUL « La commande sans capteurs mécaniques de machines synchrones à trois étages à fort couple au démarrage à faible vitesse et même à l’arrêt » Soutenance : 3 Mars 2011

[51] Phi Hung NGUYEN « Impacts des modèles de pertes sur l’optimisation sur cycle d'un ensemble convertisseur-machine synchrone. Applications aux véhicules hybrides » Soutenance : 30 Novembre 2011

[52] Boumedyen NEDJAR « Modélisation basée sur la méthode des réseaux de perméances en vue de l’optimisation de machines synchrones à simple et à double excitation » Soutenance : 7 Décembre 2011
Y. LEBRAS « Etude et réalisation d'un capteur de givre magnétostrictif » Soutenance : Décembre 2011

Karim ZEHANI « Etude du ferrite NiZnCu nanostructuré produit par SPS : des propriétés physiques à la réalisation de composants monolithiques intégrés » Soutenance : 9 Décembre 2011

Fabien ADAM « Onduleur multicellulaire parallèle à ICT : commande équilibrante, analyse, modélisation et optimisation des performances CEM » Soutenance : 10 Janvier 2012

Marc MEYER « La méthode PEEC et ses liens avec les outils de simulation dans le domaine temporel pour la modélisation des modules de puissance » Soutenance : 16 Janvier 2012

Lotfi BEGHOU « Modélisation des rayonnements électromagnétiques par des sources équivalentes - application à l'électronique de puissance » Soutenance : 19 Janvier 2012

Malik MOUHAMAD « Réduction des pertes à vide des transformateurs de distribution par utilisation de rubans amorphes » Soutenance : Février 2012

Marwan ALI « Nouvelles architectures intégrées de filtre CEM hybride » Soutenance : 6 Février 2012

Sabrine MOUMEN « Etude de la robustesse de transistors JFET à base de SiC vis-à-vis de stress électriques » Soutenance : 28 Mars 2012

Cédric JAOUEN « Méthodologie de dimensionnement sur cycle de vie d'une distribution en courant continu dans le bâtiment : Applications aux câbles et convertisseurs statiques DC/DC » Soutenance : 9 Juillet 2012

M'BAYED Rita « Commande de la machine à double excitation » Soutenance : le 12 décembre 2012.

Nguyen Duy TRAN « Performances limites en termes d’estimation et de résolution et applications aux traitements d’antenne » Soutenance : 24 Septembre 2012
Mélanie MAHOT « Estimation robuste de la matrice de covariance en traitement du signal » Soutenance : 6 Décembre 2012

A DOORGAH « Contribution à la modélisation prédictive CEM d'une chaîne d'entraînement » Soutenance : 14 Décembre 2012

Min ZHU « Contribution to the key technologies for WDM-PON and Optical Grids » Soutenance : 21 Décembre 2012

Yu Yin CHEN « Piezoelectric power transducers and its interfacing circuitry on energy harvesting and structural damping applications » Soutenance : 28 Janvier 2013

Cyril CHASTANG « Techniques et méthodologies de validation par la simulation des liens multi-gigahertz des cartes électroniques haute densité » Soutenance : 18 Mars 2013

Tien Anh NGUYEN « Instrumentation électronique et diagnostic de modules de puissance à semi-conducteur » Soutenance : 18 Juin 2013

Thu Thuy DANG « Optimisation de l'ensemble convertisseur-générateur-commande intégré à un système de micro-cogénération thermo-mécano-électrique » Soutenance : 24 Juin 2013

D 7.2. Liste des thèses en cours au 30 juin 2013

1. M. BEJAOU « Commande des machines asynchrones à double alimentation pour la production éolienne intégrée dans un système électrique complet (production /transport / consommation) » Début de la thèse : Septembre 2008

2. Lilia GALAI « Etude et développement d'un dispositif d'alimentation et de transmission de l'information à très haute isolation galvanique pour un convertisseur multiniveaux à très grand nombre d'interrupteurs » Début de la thèse : 1er Novembre 2009

3. Salah Eddine ADAMI « Contribution à l'étude de convertisseurs dédiés à la récupération d'énergie à très faible niveau de puissance » Début de la thèse : 1er Janvier 2010

4. Slim HRIGUA « Contribution à l'élaboration de modèles précis et à faible coût de calcul pour l'électronique de puissance et la CEM » Début de la thèse : 1er Janvier 2010

5. Souad BACHTI « Fiabilité des modules de puissance dans l'environnement automobile » Début de la thèse : 1er mars 2010

6. Ghania BELKACEM « Instrumentation électronique et diagnostic de modules de puissance à semi-conducteur » Début de la thèse : 1er Septembre 2010
Jonathan DENIES « Développement et mise en œuvre de méthodes d'optimisation topologique pour la conception de dispositifs électromagnétiques à couplages multiphysiques » Début de la thèse : 1er Septembre 2010

Benjamin GAUSSENS « Machine à double excitation » Début de la thèse : 1er Septembre 2010

Raouia AOUINI « Impact des interconnexions HVDC sur la stabilité des réseaux électriques » Début de la thèse : Septembre 2010

Feriel HAMDI « Interaction champ électrique/cellule – conception de puces pour l’appariement électrofluidique de cellules pour l’Électrofusion par champ électrique pulsé » Début de la thèse : Septembre 2010

Maxime BOIZARD « Développement et études de performances de nouveaux détecteurs dans des configurations RADAR multidimensionnelles » Début de la thèse : 1er octobre 2010

Nidhal BOUCENNA « Modélisation CEM des courants de mode commun dans les machines électriques triphasées » Début de la thèse : 1er octobre 2010

Renuka TAYADE « Matériaux magnétiques nanocomposites doux/durs pour les systèmes d'énergie » Début de la thèse : 1er octobre 2010

Lionel HOFFMANN « Contribution à la mise en œuvre de composants GaN pour des applications haute température et haute fréquence » Début de la thèse : 2 octobre 2010

Charlotte ROBERT « Caractérisation thermomécanique de substrats HTCC » Début de la thèse : 3 octobre 2010

Emilie BISCEGLIA « Méthodes multimodales de préparation d’échantillons biologiques pour l’analyse microbiologique » Début de la thèse : octobre 2010

Nomane BOULMERDJ « Estimation pour une commande en performance de systèmes d’optique adaptative » Début de la thèse : octobre 2010

[21] Carlotta SANTORO « Caractérisation de composés hybrides organique-inorganique à base de cuivre rencontrés en peinture : étude de leur formation et transformation » Début de la thèse : octobre 2010

[22] Xuan Linh DANG « Energie renouv/réseau » Début de la thèse : 1er Novembre 2010

[27] Yu-Hao SU « Amélioration des performances des transformateurs piézoélectriques » Début de la thèse : 1er Septembre 2011

[29] Xiaobin LIANG « Vibrations machines » Début de la thèse : 2 Septembre 2011

[31] Yi TIAN « Système de récupération d'énergie et de gestion de la thermique dans les modules de puissance » Début de la thèse : 3 Septembre 2011

[34] Ricco MATTIA « Identification en temps réel au moyen d'un FPGA des modèles des convertisseurs statiques dans une chaîne de production photovoltaïque » Début de la thèse : 6 Septembre 2011

Mohamed DAGBAGI « Conception de simulateurs temps réel à base de FPGA pour systèmes électriques » Début de la thèse : 8 Septembre 2011

Teodora ARJOCA « Actionneurs » Début de la thèse : 9 Septembre 2011

Trang NGUYEN « Identification du canal de propagation UHF pour la sécurisation dynamique des réseaux sans fil » Début de la thèse : Septembre 2011

Thomas GAUDISSON « Synthèse et propriétés de ferrites nanostructurés et de nanocomposites » Début de la thèse : 1er octobre 2011

Yu WANG « Système multimodal d’imagerie haute résolution, optique, acoustique et RF pour les Sciences de la vie » Début de la thèse 1er octobre 2011

M. BELHOCINE « Modélisation et analyse structurelle du fonctionnement dynamique des systèmes électriques » Début de la thèse : octobre 2011

Mohamed Yazid RIZI « Contrôle de la couche de cisaillement d’un écoulement de cavité » Début de la thèse : octobre 2011

Cheng CHEN « Etudes des potentialités de composants SiC en électronique de puissance pour des applications aéronautiques » Début de la thèse : 1er Septembre 2012

Thibaut KOVALTCHOUK « EnR marines : Gestion-lissage-réseau » Début de la thèse : 1er Septembre 2012

Dhouha OTHMAN « Etude d'interrupteurs en carbure de silicium et potentiel » Début de la thèse : 1er Septembre 2012

Baptiste CHAREYRON « Paliers magnétiques auto-détecteurs » Début de la thèse : 2 Septembre 2012

Sylvain PARRANG « Vibrations d'origine magnétiques et aérolyque » Début de la thèse : 3 Septembre 2012

Hibat Allah BOUKER « Machines Hte fréquence à forte compacité » Début de la thèse : 4 Septembre 2012

Adrien MERCIER « Composants magnétiques monolithiques » Début de la thèse : 5 Septembre 2012
Oussama HAMRIT « Matériaux magnétiques haute fréquence pour applications de transport » Début de la thèse : 1er octobre 2012

G. MASILAMANY « Caractérisation RF inductive des propriétés diélectriques des tissus biologiques » Début de la thèse : 1er octobre 2012.

Victor MORIN « Synthèse et propriétés de matériaux multiferroïques » Début de la thèse : 1er octobre 2012

Nicolas PASTERNAK « Synthèse verte et caractérisation de matériaux mésoporeux à base de silice » Début de la thèse : 1er octobre 2012

David PEREIRA « Mise en œuvre d'un système sensoriel micro rhéologique pour les produits cosmétiques » Début de la thèse 1er octobre 2012

Sophie TIRAT « Nouvelle approche des vernis historiques à l'huile : de la conservation des instruments vernis aux gestes et procédés du luthier » Début de la thèse : 1er octobre 2012

Kévin KASPER « Commande de systèmes d'écoulements fluides en présence d'incertitudes » Début de la thèse : octobre 2012

Claudia TRAINITO « Study of cell membrane permeabilization by using pulsed electric field - electrical modeling and characterization on biochip » Début de la thèse : octobre 2012

Arnaud BRELOY « Développement d'algorithmes d'Estimation / Détection Robuste : Calculs de Performances Théoriques et Application en RADAR (STAP) » Début de la thèse : 2012

Alice COMBERNOUX « Traitements STAP pour un radar MIMO embarqué utilisant une antenne lacunaire » Début de la thèse : 2012

Kévin K. LOUDIERE « Méthodologie d'optimisation CEM d'un entrainement à vitesse variable » Début de la thèse : 1er Janvier 2013

Trong Trung LE « Composants magnétiques pour l'électronique de puissance Début de la thèse : 1er Janvier 2013

Mei WANG « Systèmes multicapteurs RF inductifs pour l'imagerie de tissus biologiques » Début de la thèse : 1 Janvier 2013

[66] Arezki SEDOUD « Optimisation micro-rhéologique de matériaux complexes encapsulant des principes actifs à base d’algue » Début de la thèse 1er mai 2013

[67] Xi ZHOU « Nouveau système de contrôle radiofréquence de micro-algues pour la santé et le bien-être » Début de la thèse : 1er mai 2013
Annexe 8 : Évaluation des risques

Document des résultats de l’évaluation des risques

Évaluation des risques professionnels - Document Unique -

Code du travail Articles L.230-2 III(a) et R.230-1

Année 2013

Etablissement
ENS DE CACHAN

Unité de travail
Systèmes et Applications de Technologies de l’Information et de l’Énergie (SATIE)
intitulé et code UMR8029

Principales activités
Le génie électrique au sens electrical engineering (électronique + électrotechnique + automatique + traitement du signal) : la physique appliquée et la physique des systèmes et biomésoystèmes. Les chercheurs travaillent dans les champs disciplinaires bien identifiés au sein des sections 61 et 63 du CNU, 7 et 8 du CNRS et DS8 et 9 de l’AERES.

Directeur
M. Pascal LARZABAL

Effectifs

Enseignants et/ou chercheurs

ITA ou LATOSS

53

13

CDD

1

Etudiants

67

Autres

4

TOTAL

138

Sites géographiques et locaux

1

1021 m²

Description succincte de la méthode mise en œuvre pour réaliser l’évaluation

Visite initiale des lieux en présence du médecin du service médical de l’ENS de Cachan et de l’ACMO du SATIE.

Personnes associées à l’évaluation

ACMO SATIE - Responsable Hygiène et Sécurité de l’ENS de Cachan
Médecin du service médical de l’ENS de Cachan

Organisation de la sécurité au sein de l’unité de travail

ACMO ou correspondant de sécurité

Nomination

oui/non

Formation initiale

oui/non

Formation continue

oui/non

Présence d’un registre hygiène et sécurité

oui/non

Existence d’un règlement intérieur

oui/non

Mesure pour le travail isolé et/ou en heures décalées

oui/non

Existence d’une instance consultative (CSHS, SHS)

oui/non

Si non, saisine du conseil de laboratoire, service, unité, département

oui/non

Rédaction de plan de prévention lors d’intervention d’entreprises extérieuses

oui/non
Organisation des secours

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre de Sauveurs Secouristes du Travail</td>
<td>0</td>
</tr>
<tr>
<td>Nombre de chargés d'évacuation</td>
<td>2</td>
</tr>
<tr>
<td>Nombre d'équipiers de première intervention</td>
<td>1</td>
</tr>
<tr>
<td>Affichage de consignes générales de sécurité</td>
<td>oui/oui</td>
</tr>
<tr>
<td>Affichage de consignes spécifiques de sécurité</td>
<td>oui/oui</td>
</tr>
<tr>
<td>Organisation d'exercices d'évacuation</td>
<td>oui/oui</td>
</tr>
</tbody>
</table>

Formation

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre de personnes formées à la manipulation d'extincteurs</td>
<td>2</td>
</tr>
<tr>
<td>Nombre de nouveaux entrants formés</td>
<td>0</td>
</tr>
</tbody>
</table>

Nature des autres formations en hygiène et sécurité suivies par le personnel

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Manipulation Extincteurs</td>
<td>2</td>
</tr>
<tr>
<td>Risques Électriques</td>
<td>3</td>
</tr>
</tbody>
</table>

Suivi médical des personnels

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Présence d'un médecin de prévention dans l'établissement</td>
<td>oui/oui</td>
</tr>
<tr>
<td>Suivi médical adapté aux risques professionnels pour toutes les personnes</td>
<td>oui/oui</td>
</tr>
</tbody>
</table>

Accidents du travail et maladies professionnelles

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre d'accidents au cours de l'année écoulée</td>
<td>0</td>
</tr>
<tr>
<td>Nombre d'accidents analysés</td>
<td>0</td>
</tr>
<tr>
<td>Nombre de maladies professionnelles</td>
<td>0</td>
</tr>
</tbody>
</table>

Gestion des déchets

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mise en place d'une gestion des déchets</td>
<td>oui/oui</td>
</tr>
<tr>
<td>Stockage des déchets dans un local réservé</td>
<td>oui/oui</td>
</tr>
<tr>
<td>Elimination selon une filière agréeée</td>
<td>oui/oui</td>
</tr>
</tbody>
</table>

Signature du chef de service

Date de l'évaluation

27/05/2013
Evaluation des risques professionnels

Inventaire des risques

<table>
<thead>
<tr>
<th>locaux</th>
<th>dangers ou facteurs de risques identifiés</th>
<th>description des risques modalités d’exposition aux dangers</th>
<th>moyens de prévention existants : description</th>
<th>contrôlé</th>
<th>apprécier en pièce</th>
<th>appréciations générales sur la maîtrise des risques</th>
</tr>
</thead>
<tbody>
<tr>
<td>BATIMENT IDA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H29 (bureau)</td>
<td>Néant</td>
<td>2</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H28 (bureau)</td>
<td>Néant</td>
<td>2</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H27 (bureau)</td>
<td>Néant</td>
<td>1</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H26 (bureau)</td>
<td>Risque de chute</td>
<td>Fil électrique bloc multiprise dans passage</td>
<td>2</td>
<td>X</td>
<td>Risque non maîtrisé</td>
<td></td>
</tr>
<tr>
<td>H25-124 (bureau)</td>
<td>Risque incendie</td>
<td>Une multiprise non CE</td>
<td>8</td>
<td>X</td>
<td>Risque mal maîtrisé</td>
<td></td>
</tr>
<tr>
<td>H23 (bureau)</td>
<td>Néant</td>
<td>4</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H22 (bureau)</td>
<td>Néant</td>
<td>2</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H21 (Exécutant)</td>
<td>Risques électriques très faibles</td>
<td>Utilisation basse tension électrique</td>
<td>4</td>
<td>X</td>
<td>Risque maîtrisé</td>
<td></td>
</tr>
<tr>
<td>H20 (Imprimante)</td>
<td>Néant</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BATIMENT IDA (suite)

<table>
<thead>
<tr>
<th>locaux</th>
<th>dangers ou facteurs de risques identifiés</th>
<th>description des risques modalités d’exposition aux dangers</th>
<th>moyens de prévention existants : description</th>
<th>contrôlé</th>
<th>apprécier en pièce</th>
<th>appréciations générales sur la maîtrise des risques</th>
</tr>
</thead>
<tbody>
<tr>
<td>H19 Serveurs Informatique</td>
<td>Risque incendie</td>
<td>Montée en température de la pièce</td>
<td>2 Extincteur dans la pièce Présence de capteurs Arrêt des serveurs en cas d’élévation anormale de la température</td>
<td>X</td>
<td>Risque maîtrisé</td>
<td></td>
</tr>
<tr>
<td>H17 Atelier Informatique</td>
<td>Risque de stress si présence prolongée</td>
<td>Pièce sans fenêtre Encombrement</td>
<td>2</td>
<td>X</td>
<td>Risque maîtrisé</td>
<td></td>
</tr>
<tr>
<td>H11 (bureau)</td>
<td>Néant</td>
<td>7</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H38 (Exécutant)</td>
<td>Risque biologique</td>
<td>Produits biologiques : cellules</td>
<td>3 Cellules non pathogènes.</td>
<td>X</td>
<td>Risque maîtrisé</td>
<td></td>
</tr>
<tr>
<td>H7 (Exécutant)</td>
<td>Risque Chimique</td>
<td>Produits Toxicités : Toxicité qui contient du cyanure : empoisonnement rapide D’icarbone aligné et hexanal à 50% : irritants/socifs D’ösène : inflammable, explosif à 46°C et irritant</td>
<td>2 Utilisation sous sorbonne. Stockés dans un placard.</td>
<td>X</td>
<td>Risque mal maîtrisé</td>
<td></td>
</tr>
</tbody>
</table>
Section des unités de recherche

Partie D : Annexes de SATIE

Bâtiment D’ALEMBERT

<table>
<thead>
<tr>
<th>locaux</th>
<th>dangers ou facteurs de risques identifiés</th>
<th>description des risques modalités d’exposition aux dangers</th>
<th>moyens de prévention existants : description</th>
<th>à améliorer</th>
<th>appréciations générales sur la maîtrise des risques</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1-03 (bureau)</td>
<td>Risque incendie</td>
<td>Chauffage électrique branché sur multiprise non CE</td>
<td>X</td>
<td>Risque non maîtrisé</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Risque incendie</td>
<td>Multiprise branchée sur rallonge</td>
<td>X</td>
<td>Risque mal maîtrisé</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Risque chute</td>
<td>Câbles dans passage</td>
<td>X</td>
<td>Risque non maîtrisé</td>
<td></td>
</tr>
<tr>
<td>B1-05 (bureau)</td>
<td>Néant</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>B1-07 (bureau)</td>
<td>Néant</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>B1-09 (bureau)</td>
<td>Risque incendie</td>
<td>Chauffage électrique branché sur multiprise non CE</td>
<td>X</td>
<td>Risque non maîtrisé</td>
<td></td>
</tr>
<tr>
<td>B1-11 (bureau)</td>
<td>Risque incendie</td>
<td>Chauffage électrique branché sur multiprise</td>
<td>X</td>
<td>Risque non maîtrisé</td>
<td></td>
</tr>
<tr>
<td>B1-13 (bureau)</td>
<td>Risque incendie</td>
<td>Multiprise non CE</td>
<td>X</td>
<td>Risque mal maîtrisé</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Risque incendie</td>
<td>Multiprise non CE</td>
<td>X</td>
<td>Risque non maîtrisé</td>
<td></td>
</tr>
<tr>
<td>B1-12 Amphithéâtre</td>
<td>Risque évacuation de la pièce</td>
<td>Nombre de personnes pouvant être importantes</td>
<td>40</td>
<td>Présence d’une issue de secours mais parfois encombrée</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Risque chute</td>
<td>Une marche haute</td>
<td>4</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>B1-10 (bureau)</td>
<td>Risque incendie</td>
<td>Multiprise non CE</td>
<td>4</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>B1-08 (bureau)</td>
<td>Néant</td>
<td></td>
<td>4</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>B1-06 (bureau)</td>
<td>Néant</td>
<td></td>
<td>2</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Bâtiment D’ALEMBERT (suite)

<table>
<thead>
<tr>
<th>locaux</th>
<th>dangers ou facteurs de risques identifiés</th>
<th>description des risques modalités d’exposition aux dangers</th>
<th>moyens de prévention existants : description</th>
<th>à améliorer</th>
<th>appréciations générales sur la maîtrise des risques</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1-04 (bureau)</td>
<td>Néant</td>
<td></td>
<td>2</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>B1-02 Cañetra</td>
<td>Néant</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>B1-02a-b (bureau)</td>
<td>Néant</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>BK-01 Impriantes</td>
<td>Néant</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>BK-03 (bureau)</td>
<td>Risque stress</td>
<td>Encombrement de la pièce</td>
<td>Stocké dans armoire fermée</td>
<td>X</td>
<td>Risque mal maîtrisé</td>
</tr>
<tr>
<td></td>
<td>Risque incendie, risque chimique</td>
<td>Bouteille d’Acétonne (inflammable et irritant) et d’Alcool à brûler (inflammable)</td>
<td></td>
<td>X</td>
<td>Risque mal maîtrisé</td>
</tr>
<tr>
<td>BK-05 (bureau)</td>
<td>Néant</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>BK-07 (bureau)</td>
<td>Néant</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>BK-09 (bureau)</td>
<td>Néant</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>BK-11 (bureau)</td>
<td>Risque incendie</td>
<td>Prises multiples non CE</td>
<td>X</td>
<td>Risque mal maîtrisé</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Risque chute</td>
<td>Câble dans passage</td>
<td>X</td>
<td>Risque non maîtrisé</td>
<td></td>
</tr>
<tr>
<td>BK-06 Plateforme expérimentale</td>
<td>Risque électrique</td>
<td>Utilisation de courants forts jusqu’à 36V</td>
<td>10</td>
<td>Sur chaque étalb : coup de poing, disjoncteur magnetoénergique, disjoncteur différentiel 30mA, fusibles, extincteur</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Risque électrique</td>
<td>Comporessus sous tension pour être touchés directement avec absence de signalisation</td>
<td></td>
<td>X</td>
<td>Risque mal maîtrisé</td>
</tr>
</tbody>
</table>

Partie D : Annexes de SATIE

D 8-108
<table>
<thead>
<tr>
<th>Locaux</th>
<th>dangers ou facteurs de risques identifiés</th>
<th>description des risques modalités d'exposition aux dangers</th>
<th>moyens de prévention existants : description</th>
<th>contrôle</th>
<th>X à multiplier ou mettre en place</th>
<th>appréciations générales sur la maîtrise des risques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bâtiment D’ALEMBERT (suite)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRO-5</td>
<td>Risque électrique</td>
<td>Haute tension (bi et triphasé), courants forts</td>
<td>12</td>
<td>X</td>
<td>Risque maîtrisé</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Risque électrique</td>
<td>Composants sous tension</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Risque de chute</td>
<td>Escalier</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRO-6b</td>
<td>Risques chimiques</td>
<td>Plaque de tôle (inflammable et nocif), d'alcool à bruler (inflammable) et d'acide chlorhydrique dilué (irritant) non stockés dans une armoire</td>
<td>1</td>
<td>X</td>
<td>Risque non maîtrisé</td>
<td></td>
</tr>
<tr>
<td>Atelier Électronique</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRO-5</td>
<td>Risque électrique</td>
<td>Utilisation de courants faible et forts</td>
<td>4</td>
<td>X</td>
<td>Risque maîtrisé</td>
<td></td>
</tr>
<tr>
<td>Plateforme expérimentale</td>
<td>Risque chimique</td>
<td>Bouteille d'Acéline (inflammable et irritant) non stockée</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Risque chute</td>
<td>Bombe d'azote</td>
<td></td>
<td>X</td>
<td>Risque maîtrisé</td>
<td></td>
</tr>
<tr>
<td>B2-02</td>
<td>Nulniel</td>
<td>Pièce en cours de travaux</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Annexe 9 : Liste des personnels (chercheurs, enseignants-chercheurs et assimilés) de l’unité présents au 30 juin 2013 et qui le seront toujours au 1er janvier 2015

<table>
<thead>
<tr>
<th>NOM</th>
<th>PRENOM</th>
<th>SIGNATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABBAS TURKI</td>
<td>Mohamed</td>
<td></td>
</tr>
<tr>
<td>ABOU KANDIL</td>
<td>Hisham</td>
<td></td>
</tr>
<tr>
<td>BARBOT</td>
<td>Jean-Pierre</td>
<td></td>
</tr>
<tr>
<td>BEN AHMED</td>
<td>Hamid</td>
<td></td>
</tr>
<tr>
<td>BERKANI-BOUARROUDJ</td>
<td>Mounira</td>
<td></td>
</tr>
<tr>
<td>BOURLES</td>
<td>Henri</td>
<td></td>
</tr>
<tr>
<td>CAPLAIN</td>
<td>Emmanuel</td>
<td></td>
</tr>
<tr>
<td>CHAUMETTE</td>
<td>Eric</td>
<td></td>
</tr>
<tr>
<td>COSTA</td>
<td>François</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Signature</td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>DAOUT Franck</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE LA BARRIERE Olivier</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DURIEU Cécile</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FERREOL Anne</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FORSTER Philippe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRANCAIS Olivier</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GABS Mohamed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAUTIER Cyril</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRENIER Damien</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRIESMAR Pascal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HLIoui Sami</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOANG Emmanuel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDKHAJINE Lahoucine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LABROUSSE Denis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LARZABAL Pascal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nom</td>
<td>Prénom</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>LE BALLOIS</td>
<td>Sandrine</td>
<td></td>
</tr>
<tr>
<td>LE DIRAISON</td>
<td>Yohan</td>
<td></td>
</tr>
<tr>
<td>LE HUEROU</td>
<td>Jean-Yves</td>
<td></td>
</tr>
<tr>
<td>LE PIOUFLE</td>
<td>Bruno</td>
<td></td>
</tr>
<tr>
<td>LEFEBVRE</td>
<td>Stéphane</td>
<td></td>
</tr>
<tr>
<td>LO BUE</td>
<td>Martino</td>
<td></td>
</tr>
<tr>
<td>LOYAU</td>
<td>Vincent</td>
<td></td>
</tr>
<tr>
<td>MARCHAND-RAZAN</td>
<td>Florence</td>
<td></td>
</tr>
<tr>
<td>MARINESCU</td>
<td>Bogdan</td>
<td></td>
</tr>
<tr>
<td>MARTINEZ</td>
<td>Loïc</td>
<td></td>
</tr>
<tr>
<td>MAZALEYRAT</td>
<td>Frédéric</td>
<td></td>
</tr>
<tr>
<td>MICHELI</td>
<td>Magalie</td>
<td></td>
</tr>
<tr>
<td>MONMASSON</td>
<td>Eric</td>
<td></td>
</tr>
<tr>
<td>MULTON</td>
<td>Bernard</td>
<td></td>
</tr>
<tr>
<td>OJEDA</td>
<td>Javier</td>
<td></td>
</tr>
<tr>
<td>Nom</td>
<td>Prénom</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>PASKO</td>
<td>Oleksandr</td>
<td></td>
</tr>
<tr>
<td>PLACKO</td>
<td>Dominique</td>
<td></td>
</tr>
<tr>
<td>PREVOND</td>
<td>Laurent</td>
<td></td>
</tr>
<tr>
<td>REVOL</td>
<td>Bertrand</td>
<td></td>
</tr>
<tr>
<td>ROSTAING</td>
<td>Gilles</td>
<td></td>
</tr>
<tr>
<td>ROUCARIES</td>
<td>Bastien</td>
<td></td>
</tr>
<tr>
<td>RUellan</td>
<td>Marie</td>
<td></td>
</tr>
<tr>
<td>SCHMITT</td>
<td>Francoise</td>
<td></td>
</tr>
<tr>
<td>SERFATY</td>
<td>Stéphane</td>
<td></td>
</tr>
<tr>
<td>VASIC</td>
<td>Dejan</td>
<td></td>
</tr>
<tr>
<td>VIDO</td>
<td>Lionel</td>
<td></td>
</tr>
<tr>
<td>VOURC'H</td>
<td>Eric</td>
<td></td>
</tr>
<tr>
<td>WERTS</td>
<td>Martinus</td>
<td></td>
</tr>
<tr>
<td>WILKIE-CHANCELLER</td>
<td>Nicolas</td>
<td></td>
</tr>
</tbody>
</table>
Partie E - Annexes du LTN

E 1. Annexe 1 : Présentation synthétique (Executive Summary).

période d'évaluation (1er décembre 2010 - 30 juin 2013).

Intitulé de l’unité : Laboratoire des Technologies Nouvelles

Nom du directeur de l’unité : Zoubir Khatir

Effectifs de l’entité (au début du contrat en cours ; préciser si l’entité a été créée au cours de la période d’évaluation).

7 chercheurs ; 1 enseignant-chercheur ; 4 ingénieurs ; 1 assistant ingénieur et 1 technicien ; 12 post-docs et doctorants. L’entité a été créée au 01/12/2010 (au cours de la période d’évaluation)

Personnels ayant quitté l’entité pendant le contrat en cours (et nombre de mois cumulés passés dans l’entité).

1 enseignant-chercheur (10 mois); 7 doctorants (132 mois)

Nombre de recrutements réalisés au cours de la période considérée et origine des personnels

1 Enseignant-Chercheur (Chaire université) UVSQ; 1 Ingénieur de recherche (docteur de l’université de Saint-Etienne); 1 Assistant ingénieur (sortie de formation BTS); 1 Technicien

Production scientifique au cours de la période écoulée (1er décembre 2010 - 30 juin 2013) :

Indiquer les résultats majeurs obtenus par l’entité (une à trois lignes par résultat, au maximum 5 résultats majeurs). Ces résultats peuvent correspondre à tout type de production scientifique ou technique (publications, brevets, licences, logiciels...).

1) Conception d'un banc de caractérisation électrique de super-condensateurs;

2) Conception d'une plateforme expérimentale de vieillissement de composants par cyclage actif à haute température (200°C);

3) Mise au point d'un procédé permettant de maintenir fonctionnels des composants semi-conducteurs de puissance (IGBT et diodes) après micro-sections à des fins de cartographies thermiques sur tranches et sous polarisation directe;

4) Travaux sur la sûreté de fonctionnement du premier véhicule homologué en France roulant à l’hydrogène (F-City H2);

5) Conception d’un banc de caractérisation électro-thermique de composants permettant des dynamiques très élevées (de l’ordre de la microseconde).

- 34 revues à comité de lectures dont 28 internationales et 6 nationales
- 35 communications dans les conférences avec actes et comités de lecture dont 30 internationales et 5 nationales
- 3 participations à chapitre d'ouvrage
- 19 rapports scientifiques

Indiquer les 5 publications majeures de l’entité

Indiquer au maximum 5 faits illustrant le rayonnement ou l’attractivité académiques de l’entité.
- Organisation du séminaire international COST-MP1004 "Hybrid energy storage devices and systems"
- Participations à des réseaux internationaux (COST, REX, ECPE)
- Participation à l’Alliance Nationale de Coordination de la Recherche pour l’Energie (ANCRE)
- Participation à de nombreux projets collaboratifs (2 FP7, 1 REX, 3 PIA, 9 ANR, 6 FUI) sur la période d’évaluation;
- Expertise de projets internationaux (Quebec, Lettonie, Belgique, Luxembourg,....)

Indiquer au maximum 5 faits illustrant les interactions de l’entité avec son environnement socio-économique ou culturel.
- 2 membres participants aux instances du pôle de compétitivité Movéo (DAS SSE et DAS SME)
- Participation au comité de programme de l’IED VEDECOM
- 2 contrats industriels (VALEO (PCB_HT) et Renault (sur les bornes de recharges))
- 12 contrats d'expertise pour l'agence de certification ferroviaire CERTIFER
- 2 contrats CIFRE (Renault, Thales)

Indiquer les principales contributions de l’entité à des actions de formation.
- Accueil chaque année de 3 à 4 stagiaires de Master
- Accueil et formation à la recherche de doctorants
- Participations à des enseignements dans 5 Masters (PIE (ENS-Cachan/ParisXI/Supelec), VTD (ENS-Cachan, IFP-Scool, ECP), Energie (Univ.FC), TraDD (Ponts Paris-Tech, Mines Paris-Tech, X), ESME-Sudria)

Le directeur d’unité/le responsable de l’équipe peut indiquer ici brièvement 3 points précis sur lesquels il souhaite obtenir l’expertise du comité.

Le laboratoire n’utilise pas d’équipements lourds à proprement parler mais des équipements mi-lourds pour ses travaux de recherche. Il s’agit de moyens de tests de vieillissement, de caractérisation et d’analyse des composants de stockage d’énergie et de systèmes intégrés de puissance.

<table>
<thead>
<tr>
<th>Moyens de tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1 Plateforme de vieillissement de super-condensateurs : bancs de cyclage, ensemble spectromètre d’impédance</td>
</tr>
<tr>
<td>E2 Bancs de vieillissement de modules de puissance à semi-conducteurs</td>
</tr>
<tr>
<td>E3 Enceintes climatiques à variations rapides de température (VRT)</td>
</tr>
<tr>
<td>E4 Plateforme d’essais traction/freinage (hacheur, pupitre, roues acier,...)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Moyens de caractérisations</th>
</tr>
</thead>
<tbody>
<tr>
<td>E5 Banc d’essais composants (caractérisations électriques) 4000V-6000A -40°C+125°C</td>
</tr>
<tr>
<td>E6 Banc d’essais de mise en série 15kV-4kA 20°C+100°C</td>
</tr>
<tr>
<td>E7 Caméra IR rapide</td>
</tr>
<tr>
<td>E8 Bancs de caractérisations thermiques</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Moyens d’analyse</th>
</tr>
</thead>
<tbody>
<tr>
<td>E9 Scanner acoustique</td>
</tr>
<tr>
<td>E10 Profilomètre optique</td>
</tr>
<tr>
<td>E11 Tomographe RX pour de l’imagerie 2D et de la tomographie 3D (mutualisé avec l’UVSQ)*</td>
</tr>
<tr>
<td>E12 Microscope électronique à balayage (MEB) environnemental (à pression variable), doté d’une grande chambre et équipé de différentes sondes dont un EDX (mutualisé avec l’UVSQ) *</td>
</tr>
</tbody>
</table>

* Les matériels mutualisés avec l’UVSQ sont des équipements appartenant à l’université de Versailles/Saint-Quentin (UVSQ) et accueillis dans les locaux du LTN qui les utilise pour ses travaux.
E 3. Annexe 4 : Organigramme fonctionnel.
E 4. Annexe 5 : Règlement Intérieur du LTN

Préambule

Le présent règlement intérieur ne se substitue en aucune façon à celui de l'IFSTTAR et est en cohérence avec ce dernier. Il a pour objet de préciser les règles de fonctionnement interne et les mesures applicables à l'ensemble du personnel affecté au laboratoire des Technologies Nouvelles (LTN) de l'IFSTTAR y compris les agents contractuels à durée déterminée, les doctorants, post-doctorants et stagiaires. Il est susceptible d'évolution suivant les décisions de la Direction de l'Etablissement, de la Direction du site ou du conseil de laboratoire.

Un exemplaire du règlement est remis à chaque membre du personnel qui est tenu d'en prendre connaissance, de l'appliquer et d'en favoriser l'application.

Ce règlement contient une annexe (avec les noms de l'ACMO, des sauveteurs secouristes du travail et des correspondants Qualité, Informatique, Communication, Archives) et est complété d'une charte de bonnes pratiques des salles d'expérimentations (à signer en double exemplaire dont un à destination du secrétariat).

1. DISPOSITIONS GÉNÉRALES

Accueil des nouveaux arrivants

Tout nouvel arrivant doit prendre connaissance du présent règlement, de le signer en deux exemplaires (un pour lui-même, l'autre remis au secrétariat du laboratoire). Les personnels ayant vocation à travailler dans les salles d'expérimentations doivent également prendre connaissance de la note d'organisation du laboratoire (charte des bonnes pratiques des salles d'expérimentations), de la signer en deux exemplaires (en conserver un et remettre l'autre au secrétariat).

Le nouvel arrivant est tenu également d'accomplir les formalités afférentes à son statut et remplir les documents suivants en liaison avec le secrétariat:

- Pour les personnels contractuels : PV d’installation, charte de confidentialité (2 exemplaires), fiche d’enregistrement utilisateur, charte informatique
- Pour les personnels statutaires stagiaires : Attestation d'arrivée, Charte de confidentialité (3 exemplaires), fiche d’enregistrement utilisateur, charte informatique
- Pour les personnels stagiaires (master ou ingénieur) sous convention, le responsable scientifique, membre du laboratoire, est garant du respect par le stagiaire du règlement intérieur et le cas échéant de la charte de bonnes pratiques des salles d’expérimentations.

Départ de personnel

A son départ, tout personnel a obligation de restituer tout matériel qui lui a été confié durant son séjour au laboratoire (clé, badge d'accès au bâtiment, documents,...) auprès du secrétariat du laboratoire. Il laissera également, au secrétariat pour archivage, un enregistrement des données informatiques non personnelles sur un support informatique.

Accès aux salles de laboratoires

Les salles d’expérimentations sont accessibles aux seuls personnels ayant une habilitation adéquate. Dans le cas contraire ils doivent être accompagnés par un permanent habilité. Ces salles sont accessibles uniquement après prise de connaissance et engagement d’application en signant la charte de bonnes pratiques.

Pour des raisons de sécurité, les agents temporaires ayant vocation à travailler dans les salles d'expérimentations se verront attribuer des badges leur permettant d'accéder uniquement aux salles qui correspondent à leurs activités.

Horaires et accès au bâtiment

Le personnel est tenu de prendre connaissance du règlement intérieur de l'IFSTTAR concernant les horaires de travail.

Les personnels peuvent accéder au bâtiment du lundi au vendredi (hors jours fériés et de fermetures) à partir de 6h45 et jusqu'à 21h15. En dehors de cette plage horaire, l'accès au site est interdit, l'alarme est activée et toute intrusion, même avec un badge du site déclenchera la sirène.

Un dispositif de vidéosurveillance est mis en place à l'entrée principale du bâtiment pour la prévention des atteintes à la sécurité des personnes et des biens. Sont habilités à consulter les enregistrements le directeur général de l’institut, le secrétaire général de l’institut, le directeur délégué, le secrétaire général délégué et le responsable des moyens généraux du site. Le droit d'accès aux images s’exerce auprès du Directeur délégué de site.
L'accès aux locaux en dehors des heures d'ouverture du site, n'est autorisé qu'en cas de nécessité de service et doit faire l'objet d'une autorisation du directeur du laboratoire et du secrétariat général délégué du site.

Absences

Toute absence durant les heures de travail doit être préalablement autorisée, à l'exception de celles qui résultent d'un arrêt-maladie ou d'un accident de travail/service.

Toute absence non prévue d'un agent, quel qu'en soit le motif, doit être déclarée dans les plus brefs délais et justifiée dans un délai de 48 heures.

En cas de maladie ou d'accident, l'envoi au service des ressources humaines d'un certificat médical indiquant la durée probable de l'absence est obligatoire.

A défaut de justification dans le délai, ou en cas de justification non recevable, l'absence est considérée comme injustifiée, avec toutes les conséquences en résultant notamment au plan disciplinaire.

Pour tout autre type d'absence, se référer au règlement intérieur de l'Etablissement.

Missions

Tout personnel qui se déplace dans l'exercice de ses fonctions doit être en possession d'un ordre de mission établi préalablement au déroulement de la mission. L'ordre de mission sera établi après qu'une demande de déplacement ait été dûment signée par le directeur du laboratoire ou le délégataire de signature le cas échéant. Ce document est obligatoire du point de vue administratif et juridique; il assure la couverture de l'agent au regard de la réglementation sur les accidents de service.

L'agent amené à se rendre directement de son domicile sur un lieu de travail occasionnel sans passer par sa résidence administrative, est couvert en cas d'accident du travail sous réserve d'être en possession d'un ordre de mission ou d'avoir une autorisation d'utilisation d'un véhicule de service ou de son véhicule personnel.

Pour les déplacements hors UE, une demande spécifique doit être faite auprès de la DAEI (Direction des affaires européennes et internationales) avec l'avis favorable du directeur du laboratoire. Afin de bénéficier des meilleurs tarifs, la réservation des billets doit être faite suffisamment à l'avance.

Pour la commande des billets, l'agent doit établir préalablement son plan de voyage afin de fournir tous les renseignements nécessaires au secrétariat (trajet, horaires,…). L'annulation ou la modification des billets doivent être faits dans les temps spécifiés sur les billets.

Secrétariat

Tout personnel peut accéder à l'espace partagé du laboratoire (page d'accueil intranet puis « Mon espace » suivi par « Mes espaces de travail ») où un certain nombre de documents et informations sont fournis ainsi que la liste des outils et la base de publications.

La carte de cantine pour les invités du laboratoire doit être utilisée de façon rigoureuse et restituée après usage. Les factures doivent être agrafées et les noms des personnes invitées inscrites sur le cahier correspondant afin de faciliter la gestion.

Les demandes d'achats de petit matériel (bureautique / informatique) se font auprès du secrétariat. Un cahier d'inventaire, tenu au secrétariat, devra être rempli :

- après toute acquisition auprès du secrétariat de licences de logiciels, de matériel informatique (disques durs, clé USB, ..) ou de cahiers de laboratoire;
- après chaque emprunt de petits équipements tenus au secrétariat (appareil photo numérique, projecteur vidéo, chargeur de piles, multiprise (hub) USB, etc…).

Utilisation de véhicules de service

Le véhicule de service est un véhicule mis à disposition pour leurs seuls besoins professionnels, pendant les heures et jours de travail. Peuvent conduire un véhicule de service de l'IFSTTAR :

- Les personnels rémunérés directement par l'IFSTTAR (ayant une fiche de paye de l'Institut)
- Les personnels rémunérés ou non par l'IFSTTAR, concernés par une convention dûment signée faisant apparaître la possibilité de conduire un véhicule de service.

Les personnels autorisés à utiliser un véhicule de service doivent posséder un permis de conduire en cours de validité et d'une autorisation de conduire le véhicule liée à l'obtention d'un ordre de service ou d'un ordre de mission.
Utilisation des moyens informatiques

L'utilisation des moyens informatiques est soumise à des règles explicitées dans la charte informatique. Cette charte est avant tout un code de bonne conduite. Elle a pour objet de préciser la responsabilité des utilisateurs, en accord avec la législation, et doit être signée par tout nouvel arrivant.

Archives

La gestion des archives doit se faire dans le respect de la note de procédure ad-hoc. Chaque agent est responsable des documents qu’il détient, qu’il a produits ou reçus. Tout document administratif, juridique, scientifique ou historique doit être conservé.

2. ANIMATION ET VIE DU LABORATOIRE

Conseil de laboratoire

Le conseil de laboratoire se réunit, en principe, le premier lundi ouvré de chaque mois, sauf indication contraire du directeur du laboratoire. Tous les personnels de l'unité, qu'ils soient permanents, contractuels, doctorants, post-doctorants ou stagiaires sont tenus d'y assister s'ils sont présents dans les locaux.

Le conseil de laboratoire a un double rôle de diffusion et d'échange d'informations aux membres de l'unité provenant des différentes instances (Codir, CSR, Conseil de département,...), et consultatif par le directeur du laboratoire, entre autre, sur :

- la prise de décisions concernant l'organisation et la vie du laboratoire;
- le suivi du déroulement scientifique, technique et budgétaire des projets contractuels;
- la sélection et l'organisation les réponses à appels à projets;
- la programmation annuelle et son suivi.
- la gestion des équipements du laboratoire;
- la politique de formation;

Séminaires scientifiques

Un séminaire scientifique est organisé une fois par trimestre au moins. Il réunit l'ensemble des personnels du laboratoire, les doctorants sont tenus d'y assister. Ces séminaires ont un rôle d'échanges scientifiques. Les personnels scientifiques y présentent leurs travaux aux autres membres du laboratoire. Cela doit permettre une meilleure connaissance des travaux respectifs de chacun et en particuliers de ceux des doctorants qui sont prioritaires pour les présentations.

Revues de direction

En vue de l'amélioration continue de la qualité et de l'efficacité des processus, une revue de direction de l'unité est organisée par le directeur du laboratoire au moins une fois par an (1er trimestre) et fait l'objet d'un compte rendu établi par le Correspondant qualité et validé par le Chef d’unité. Ce compte rendu est mis à la disposition de l’ensemble du personnel de l’unité (GEDOQ) et adressé à la DQMN pour que les éléments puissent être pris en compte lors de la revue de direction de l’organisme au mois de mars de chaque année.

3. SECURITE RELATIVE A LA DIFFUSION D'INFORMATION

Règles de confidentialité

Chacun est tenu de respecter la confidentialité des travaux qui lui sont confiés ainsi que ceux de ses collègues et respecter la charte de confidentialité signée lors de son arrivé.

Règles de publication

Les publications des membres de l'unité doivent clairement faire apparaître la mention du PRES, de l'organisme et de l'unité. Le modèle de signature à suivre des articles est le suivant:

Université Paris Grand Ouest, IFSTTAR, LTN, F-78000 Versailles, France

Les personnels publiants sont invités à compléter le tableau de publications qui se trouve dans l’espace partagé du LTN (intranet) à chaque nouvelle publication. Cette base servira ensuite à alimenter le portail Madis et la liste du site internet de l'unité.

Partie E : Annexes du LTN
Sécurité informatique – protection des données

L’usage des ressources informatiques est de la responsabilité de l’utilisateur. Il convient de respecter un usage rationnel et loyal de ces outils afin d’éviter la saturation et tout détournement à des fins personnelles. Quelques règles d’usage sont à adopter :

- Respecter les recommandations de sécurité mise en place par l’établissement pour lutter contre les virus et autres attaques informatiques ;
- Assurer la protection des données sensibles en utilisant les moyens de sauvegarde mis à disposition (serveur AERES);
- Assurer la protection des données sensibles au sens de la politique de sécurité des systèmes d'information afin d’éviter la diffusion de toute information à caractère confidentiel ;
- Assurer la protection des données lorsque l’on quitte son poste de travail (écran de veille avec demande d’ouverture de la session);
- Le stockage éventuel de données à caractère privé doit être réalisé dans des répertoires explicites intitulés "privé".

Le caractère nomade des supports tels que les ordinateurs portables, clés USB, disques externes nécessitent une plus grande vigilance en raison de leur vulnérabilité. Il est à noter que ces supports d’information devraient faire l’objet d’un chiffrement des données afin de réduire les risques lors des déplacements notamment à l’étranger. Il est d’usage d’utiliser un support vierge de toute autre donnée lors du transfert de document de/vers l’extérieur afin d’éviter le risque de divulgation d’informations confidentielles.

L’usage de serveurs externes pour le partage de données (icloud, dropbox,...) doit se faire avec prudence et après vérification d’un niveau suffisant de sécurité.

Il est rappelé que l’ensemble des agents, quel que soit leur statut, est soumis à la législation française en vigueur et notamment :

- la loi relative à l’informatique, aux fichiers et aux libertés,
- la législation relative aux atteintes aux systèmes de traitement automatisé de données,
- les dispositions du code de propriété intellectuelle relative à la propriété littéraire et artistique.

4. Hygiène et sécurité

En matière d’hygiène et sécurité, le règlement intérieur se réfère au code du travail et à la note d’organisation de l’INRETS en date du 05/05/2009 disponible sur le site intranet et au secrétariat.

Il incombe au directeur du laboratoire de veiller à la sécurité et à la protection des personnels et d’assurer la sauvegarde des biens. Ainsi, les consignes de sécurité sont diffusées et affichées et les personnels sont tenus de les respecter. Des équipements de protection sont mis à disposition du personnel dans les salles d’expérimentation. Tous les locaux présentant un risque particulier font l’objet d’une signalétique (affichage sur la porte).

L’ACMO (agent chargé de la mise en œuvre des règles d’hygiène et de sécurité), assiste et conseille le directeur du laboratoire dans ce domaine. Son rôle est de sensibiliser les personnels au respect des règles d’hygiène et sécurité et participer et de s’assurer de la bonne tenue du registre d’hygiène et sécurité du laboratoire. Le nom du personnel ACMO est cité en annexe.

L’ACMO du laboratoire organiserà des sessions de formation et d’information relatives aux règles hygiènes et sécurité adaptée à chaque nouvelle arrivée de personnel (quel que soit son statut). Les personnels sont tenus d’y assister et se verront éventuellement proposer des programmations de formations d’habilitations adéquates.

Tout personnel engage sa responsabilité en cas de refus ou d’ignorance volontaire des consignes de sécurité.

Le registre d’hygiène et de sécurité du laboratoire, dans lequel les personnels peuvent consigner leurs observations et suggestions relatives à la prévention des risques et à l’amélioration des conditions de travail, est disponible au secrétariat.

Tout accident corporel, survenant dans le cadre de l’activité professionnelle, sera immédiatement rapporté auprès du directeur de l’unité ou du secrétaire délégué du site et sera consigné sur le registre Hygiène et Sécurité.

Le Document Unique d’Evaluation des Risques Professionnels (DUERP) recensant l’ensemble des risques présents au laboratoire et les actions à mettre en œuvre, est à disposition dans le bureau de du secrétariat général délégué de site l’ACMO.
5. FORMATION

Les formulaires de demande de formation doivent être envoyés, renseignés et signés à la fois par le demandeur et par le directeur du laboratoire, un mois avant le début de la formation. Le formulaire est accessible sur le site intranet à l'adresse : http://intranet.ifsttar.fr/fonctions-transversales/ressources-humaines/formation/

Toute demande de formation doit être envoyée à l’adresse : formation(at)ifsttar.fr (avec en copie le gestionnaire concerné).

Annexe au règlement intérieur du LTN

Agent Sécurité Prévention Labo
Jean-Pierre OUSTEN : poste 3968, bureau 18, jean-pierre.ousten@ifsttar.fr

Sauveteurs secouristes du travail
Laurent DUPONT : poste 3984, bureau 13, laurent.dupont@ifsttar.fr
Pachak Bougnalith : poste 3936, bureau 19, pachak.bougnalith@ifsttar.fr
Thierry KOCINIEWSKI : poste 3989, bureau 15, thierry.kociniewski@ifsttar.fr
François DEMANGE : poste 3967, bureau 19, francois.demange@ifsttar.fr

Serre-file du LTN
Rez-de-Chaussée : Jean-Pierre OUSTEN : poste 3968, bureau 18, jean-pierre.ousten@ifsttar.fr
1ere étage : Richard LALLEMAND : poste 3977, bureau 08, richard.lallemand@ifsttar.fr

Correspondant Qualité : Ali IBRAHIM : poste 3990, bureau 15, ali.ibrahim@ifsttar.fr
Correspondant informatique : Nandhini RAJARAVISHANKAR : poste 4013, bureau 04, secretariat-ltn@ifsttar.fr
Correspondant archives : Nandhini RAJARAVISHANKAR : poste 4013, bureau 04, secretariat-ltn@ifsttar.fr
Correspondant communication : Nandhini RAJARAVISHANKAR : poste 4013, bureau 04, secretariat-ltn@ifsttar.fr
E 5. Annexe 6 : Réalisations à partir du 01/12/2010

E 5.1. Production scientifique (par thème);

E 5.1.a. Thème 1: la robustesse et la fiabilité des systèmes intégrés de puissance

Participation à ouvrage

<table>
<thead>
<tr>
<th>Participation à ouvrage</th>
</tr>
</thead>
</table>

Articles de revues à comité de lecture

<table>
<thead>
<tr>
<th>Articles de revues à comité de lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACL-1 2013</td>
</tr>
</tbody>
</table>

Articles de revues à comité de lecture non répertoireés

<table>
<thead>
<tr>
<th>Articles de revues à comité de lecture non répertoireés</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACLN-1 2012</td>
</tr>
</tbody>
</table>

Communications à congrès internationaux avec actes
| ACTI-6 | 2013 | Z. Khatir, S. Lefebvre, "Main issues and limitations in Power cycling tests for future integrated power converters", Automotive Power Electronics (APE), April 2013 |
| ACTI-9 | 2012 | D. Othman, M. Berkani, S. Lefebvre, A. Ibrahim, Z. Khatir, A. Bouzourene, “Comparison study on performances and robustness between SiC MOSFET & JFET devices - Abilities for aeronautics application”, ESREF, 2012 Cagliari, Italy |

Communications à congrès nationaux avec actes

| ACTN-2 | 2011 | D. Othman, M. Berkani, S. Lefebvre, A. Ibrahim, Z. Khatir, A. Bouzourene, "Etude Comparative de transistors MOSFET et JFET en technologie SiC - Potentiel d’utilisation dans les applications aéronautiques", Electronique de Puissance du Futur (EPF) 2011 |

Thèses

| TH-3 | 2012 | S. Moumen, "Etude de la robustesse de transistors JFET à base de SiC vis-à-vis de stress électriques", Thèse de doctorat de l’ENS-Cachan, mars 2012 |

Autre production

E 5.1.b. Thème 2: le comportement au vieillissement des systèmes de stockage d’énergie à super-condensateurs

Articles de revues à comité de lecture

Communications à congrès internationaux avec actes

Communications à congrès nationaux avec actes

Thèse

Autre production

E 5.1.c. Thème 3: l’intégration et l’interface système des générateurs à pile à combustible

Participation à ouvrage

| OS-3 | 2010 | A. De Bernardinis, Chapitre 2.4 d’ouvrage Hermès Science, « La pile à combustible et les transports guidés urbains », déc. 2010 |
Articles de revues à comité de lecture

<table>
<thead>
<tr>
<th>Réf.</th>
<th>Année</th>
<th>Auteurs</th>
<th>Titre</th>
<th>Référence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACL-24</td>
<td>2011</td>
<td>F. Harel, S. Bégot, S. Wasterlain, D. Candusso</td>
<td>Electrochemical characterisation of fuel cell stack during cold start.</td>
<td>EPJAP, Vol 54, n° 2 - article 23402, 10 pages</td>
</tr>
</tbody>
</table>

Communications à congrès internationaux avec actes

<table>
<thead>
<tr>
<th>Réf.</th>
<th>Année</th>
<th>Auteurs</th>
<th>Titre</th>
<th>Référence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTI-23</td>
<td>2012</td>
<td>A. De Bernardinis, E. Frappé, O. Béthoux, C. Marchand, G. Coquery</td>
<td>Electrical architecture for high power segmented PEM Fuel Cell in vehicle application</td>
<td>REVET 2012, Hammamet, Tunisie</td>
</tr>
</tbody>
</table>

Communications à congrès nationaux avec actes

<table>
<thead>
<tr>
<th>Réf.</th>
<th>Année</th>
<th>Auteurs</th>
<th>Titre</th>
<th>Référence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTN-4</td>
<td>2011</td>
<td>E. Frappé, A. De Bernardinis, O. Bethoux, C. Marchand, G. Coquery</td>
<td>Architecture électrique de sortie pour générateur pile à combustible de forte puissance</td>
<td>Electrotechnique du Futur (EF), 2011</td>
</tr>
</tbody>
</table>

Thèses

<table>
<thead>
<tr>
<th>Réf.</th>
<th>Année</th>
<th>Auteurs</th>
<th>Titre</th>
<th>Référence</th>
</tr>
</thead>
<tbody>
<tr>
<td>TH-6</td>
<td>2012</td>
<td>E. FRAPPE</td>
<td>Architecture de convertisseur statique tolérante aux pannes pour générateur pile à combustible modulaire de puissance-traction 30kW</td>
<td>Mémoire de thèse de doctorat de l’Université Paris Sud XI, soutenu le 17/12/2012</td>
</tr>
<tr>
<td>TH-7</td>
<td>2012</td>
<td>R. Onanena GUELAN</td>
<td>Diagnostic de piles à combustible PEMFC : sélection de descripteurs et suivi de point de fonctionnement</td>
<td>Thèse de doctorat de l’Université de Franche-Comté (UFC), déc. 2012</td>
</tr>
</tbody>
</table>

E 5.1.d. Thème 4: Applications et aspects systèmes

<table>
<thead>
<tr>
<th>Réf.</th>
<th>Année</th>
<th>Auteurs</th>
<th>Titre</th>
<th>Référence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACL-28</td>
<td>2012</td>
<td>A. De Bernardinis, S. Butterbach, R. Lallemand, A. Jeunesse, G. Coquery</td>
<td>Double resonant isolated...</td>
<td>...</td>
</tr>
</tbody>
</table>
Articles de revues à comité de lecture non répertoriés

<table>
<thead>
<tr>
<th>Acronyme</th>
<th>Type</th>
<th>Intitulé</th>
<th>Subv. (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MeGaN</td>
<td>PSPC (OSEO) 2012-2018</td>
<td>Module Electronique en GaN,</td>
<td>774 086</td>
</tr>
<tr>
<td>ANR</td>
<td>FIDEA (1) ANR (VTT) 2010-2013</td>
<td>Fiabilité et Diagnostic des Composants Electroniques de Puissance pour applications Automobiles</td>
<td>154 228</td>
</tr>
<tr>
<td>ANR</td>
<td>ECLIPSE ANR (Blanc) 2009-2013</td>
<td>Contacts innovants pour les systèmes électroniques de puissance intégrés.</td>
<td>142 168</td>
</tr>
<tr>
<td>ANR</td>
<td>MOS i-Stars ANR (VTT) 2009-2012</td>
<td>Transistor MOS de puissance basse tension 14V, fort courant, faible surface, haute température pour mécatronique automobile</td>
<td>153 058</td>
</tr>
<tr>
<td>ANR</td>
<td>REMAPODE (2) ANR (P2IC) 2007-2011</td>
<td>Reliability Management of Power Electronic Devices</td>
<td>100 000</td>
</tr>
<tr>
<td>FUI</td>
<td>MÉMOIRE FUI 2009-2013</td>
<td>Mécatronique des Modules de PuissanceIntégrant le Refroidissement pour véhicule Electrique et hybride</td>
<td>813 319</td>
</tr>
<tr>
<td>FUI</td>
<td>SIC-HT2 (2) FUI 2008-2012</td>
<td>Composants de Puissance SiC pour Applications Hautes Tensions et Hautes Températures (ferroviaire et aéronautique)</td>
<td>225 391</td>
</tr>
<tr>
<td>FUI</td>
<td>THERMELEC FUI 2008-2012</td>
<td>Management thermique pour électroniques de puissance embarquées</td>
<td>43 250</td>
</tr>
</tbody>
</table>

Communications à congrès internationaux avec actes

<table>
<thead>
<tr>
<th>Acronyme</th>
<th>Type</th>
<th>Intitulé</th>
<th>Subv. (€)</th>
</tr>
</thead>
</table>

Communications à congrès nationaux avec actes

<table>
<thead>
<tr>
<th>Acronyme</th>
<th>Type</th>
<th>Intitulé</th>
<th>Subv. (€)</th>
</tr>
</thead>
</table>

Autre production

<table>
<thead>
<tr>
<th>Acronyme</th>
<th>Type</th>
<th>Intitulé</th>
<th>Subv. (€)</th>
</tr>
</thead>
</table>

E 5.2. Contrats institutionnels sur financement public (par thème)

E 5.2.a. Thème 1: la robustesse et la fiabilité des systèmes intégrés de puissance

<table>
<thead>
<tr>
<th>Acronyme</th>
<th>Type</th>
<th>Intitulé</th>
<th>Subv. (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIA</td>
<td>MeGaN</td>
<td>Module Electronique en GaN,</td>
<td>774 086</td>
</tr>
<tr>
<td>ANR</td>
<td>FIDEA (1)</td>
<td>Fiabilité et Diagnostic des Composants Electroniques de Puissance pour applications Automobiles</td>
<td>154 228</td>
</tr>
<tr>
<td>ANR</td>
<td>ECLIPSE</td>
<td>Contacts innovants pour les systèmes électroniques de puissance intégrés.</td>
<td>142 168</td>
</tr>
<tr>
<td>ANR</td>
<td>MOS i-Stars</td>
<td>Transistor MOS de puissance basse tension 14V, fort courant, faible surface, haute température pour mécatronique automobile</td>
<td>153 058</td>
</tr>
<tr>
<td>ANR</td>
<td>REMAPODE (2)</td>
<td>Reliability Management of Power Electronic Devices</td>
<td>100 000</td>
</tr>
<tr>
<td>FUI</td>
<td>MÉMOIRE</td>
<td>Mécatronique des Modules de PuissanceIntégrant le Refroidissement pour véhicule Electrique et hybride</td>
<td>813 319</td>
</tr>
<tr>
<td>FUI</td>
<td>SIC-HT2 (2)</td>
<td>Composants de Puissance SiC pour Applications Hautes Tensions et Hautes Températures (ferroviaire et aéronautique)</td>
<td>225 391</td>
</tr>
<tr>
<td>FUI</td>
<td>THERMELEC</td>
<td>Management thermique pour électroniques de puissance embarquées</td>
<td>43 250</td>
</tr>
</tbody>
</table>
Section des unités de recherche

Partie E : Annexes du LTN

E 5-128

(1) Porteur du projet, (2) direction de WP (ou de lot)

- listes des brevets, des contrats industriels, des contrats sur financement privé

<table>
<thead>
<tr>
<th>Objet</th>
<th>Industriel</th>
<th>Titre</th>
<th>montant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thèse CIFRE</td>
<td>Renault</td>
<td>Fiabilité de module de puissance dans l'environnement automobile</td>
<td>45 000</td>
</tr>
<tr>
<td>(2010-2013)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thèse CIFRE</td>
<td>Thales</td>
<td>Etude d'interrupteurs en carbure de silicium et potentiel d'utilisation dans</td>
<td>21 900</td>
</tr>
<tr>
<td>(2012-2015)</td>
<td></td>
<td>les convertisseurs aéronautiques</td>
<td></td>
</tr>
<tr>
<td>PCB-HTV</td>
<td>Valeo</td>
<td>Tenue haute tension de PCB pour VE</td>
<td>32 628</td>
</tr>
</tbody>
</table>

E 5.2.b. Thème 2: le comportement au vieillissement des systèmes de stockage d'énergie à super-condensateurs

<table>
<thead>
<tr>
<th>Acronyme</th>
<th>Type</th>
<th>Intitulé</th>
<th>Subv. (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPERCAL</td>
<td>ANR (VTT)</td>
<td>Interaction des modes de vieillissement calendaire des super-condensateurs pour applications automobiles</td>
<td>241 045</td>
</tr>
<tr>
<td>ANR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUPERSTORE</td>
<td>ANR (VTT)</td>
<td>Modules de super-condensateurs dédiés au stockage d'énergie des applications ferroviaires</td>
<td>468 576</td>
</tr>
<tr>
<td>ANR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIMSTOCK</td>
<td>ANR (VTT)</td>
<td>Modélisation du comportement de systèmes de stockage d'énergie embarqués pour véhicules routiers</td>
<td>75 816</td>
</tr>
</tbody>
</table>

E 5.2.c. Thème 3: l'intégration et l'interface système des générateurs à pile à combustible

<table>
<thead>
<tr>
<th>Acronyme</th>
<th>Type</th>
<th>Intitulé</th>
<th>Subv. (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOBYPOST</td>
<td>FP7 (JT1)</td>
<td>Mobility with hydrogen for postal delivery</td>
<td>112 000</td>
</tr>
<tr>
<td>ANR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIAPASON2</td>
<td>ANR (HPAC)</td>
<td>Diagnostic de pile à combustible pour applications automobiles et stationnaires sans instrumentation (phase 2)</td>
<td>192 477</td>
</tr>
</tbody>
</table>

E 5.2.d. Thème 4: Applications et aspects systèmes

<table>
<thead>
<tr>
<th>Acronyme</th>
<th>Type</th>
<th>Intitulé</th>
<th>Subv. (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FABRIC</td>
<td>FP7 (Pi)</td>
<td>FeAsibility analysis and development of on-Road charging solutions for future electric vehiCles</td>
<td>28 000</td>
</tr>
<tr>
<td>PCRD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HYCON-2</td>
<td>FP7 (NOE)</td>
<td>Highly Complex and Networked Control Systems</td>
<td>30 000</td>
</tr>
<tr>
<td>PIA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOVEOTREVE</td>
<td>AMI (ADEME)</td>
<td>Test de la Recharge des Véhicules Electriques</td>
<td>816 548</td>
</tr>
<tr>
<td>HYBRELEC</td>
<td>AMI (ADEME)</td>
<td>Hybride rechargeable électrique</td>
<td>538 467</td>
</tr>
</tbody>
</table>
Partie E : Annexes du LTN

ANR

<table>
<thead>
<tr>
<th>ANR</th>
<th>Archybald</th>
<th>ANR (PReDiT) 2008-2011</th>
<th>Architecture hybride adaptée aux véhicules lourds à forte disponibilité</th>
<th>167 060</th>
</tr>
</thead>
</table>

FUI

| FUI | SofraCi | FU1 2009-2013 | Structure Onduleur Fort Rendement A fonction de Charge Intégrée | 406 921 |

Autre

| Autre | Regeneo | Digiteo | Stabilité des véhicules actionnés par des moteurs-roues électriques : gestion des défaillances et impact du freinage régénératif | 19 800 |

- **listes des brevets, des contrats industriels, des contrats sur financement privé**

<table>
<thead>
<tr>
<th>Objet</th>
<th>Industriel</th>
<th>Titre</th>
<th>montant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recharge</td>
<td>RENAULT</td>
<td>Tests bornes de recharges</td>
<td>33 038</td>
</tr>
<tr>
<td>Expertise</td>
<td>CERTIFER</td>
<td>Evaluation SIL4D carte CRIS</td>
<td>3 520</td>
</tr>
<tr>
<td>Expertise</td>
<td>CERTIFER</td>
<td>Centrale tachymétrique tramway CITADIS</td>
<td>3 690</td>
</tr>
<tr>
<td>Expertise</td>
<td>CERTIFER</td>
<td>APS tramway de Tours</td>
<td>5740</td>
</tr>
<tr>
<td>Expertise</td>
<td>CERTIFER</td>
<td>Guidage du Phileas de Douai</td>
<td>14350</td>
</tr>
<tr>
<td>Expertise</td>
<td>CERTIFER</td>
<td>Métro de Marseille</td>
<td>3280</td>
</tr>
<tr>
<td>Expertise</td>
<td>CERTIFER</td>
<td>Métro de Panama</td>
<td>3800</td>
</tr>
<tr>
<td>Expertise</td>
<td>CERTIFER</td>
<td>Ligne B du Métro de Lyon</td>
<td>8200</td>
</tr>
</tbody>
</table>

- **Brevets, contrats industriels, contrats sur financement privé... (par thème)**
E 6. Annexe 7 : Liste des thèses

E 6.1. Thèses soutenues :

2. Benoît THOLLIN, "Outils et méthodologies de caractérisation électrothermique pour l'analyse des technologies d'interconnexion de l'électronique de puissance", thèse de doctorat de l'Université de Grenoble, soutenue le 04/04/2013.
3. Raissa ONANENA GUELAN, "Diagnostic de piles à combustible PEMFC : sélection de descripteurs et suivi de point de fonctionnement", thèse de doctorat de l'Université de Franche-Comté (UFC), soutenue le 20/12/2012.
5. Emmanuel FRAPPE, "Architecture de convertisseur statique tolérante aux pannes pour générateur pile à combustible modulaire de puissance-traction 30kW", thèse de doctorat de l'Université Paris XI, soutenue le 17/12/2012.

E 6.2. Thèses en cours :

1. Dhouha OTHMAN, "Etude d'interrupteurs en carbure de silicium et potentiel d'utilisation dans les convertisseurs aéronautiques", doctorante de l'ENS-Cachan, première inscription le 01/10/2011.
2. Son-Ha TRAN, "Fiabilité de dispositifs mécatroniques de puissance, étude de l'impact de micro-cavités (voids) dans les attaches de puces", doctorant de l'ENS-Cachan, première inscription le 01/10/2012.
3. Nicolas NOGUER, "Analyse de la fiabilité d'une pile à combustible et architectures de piles autorisant des fonctionnements en modes dégradés", doctorant de l'Université de Franche-Comté (UFC), première inscription le 01/10/2011.
E 8. Annexe 8 : Document unique d’évaluation des risques

<table>
<thead>
<tr>
<th>Nom</th>
<th>Prénom</th>
<th>Catégorie (Grade)</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>CANDUSSO</td>
<td>Denis</td>
<td>Chercheur (CR1)</td>
<td></td>
</tr>
<tr>
<td>DE BERNARDINIS</td>
<td>Alexandre</td>
<td>Chercheur (CR1)</td>
<td></td>
</tr>
<tr>
<td>DUPONT</td>
<td>Laurent</td>
<td>Chercheur (CR2)</td>
<td></td>
</tr>
<tr>
<td>IBRAHIM</td>
<td>Ali</td>
<td>ITA (IR2)</td>
<td></td>
</tr>
<tr>
<td>INGROSSO</td>
<td>Damien</td>
<td>ITA (A1)</td>
<td></td>
</tr>
<tr>
<td>KAUUV</td>
<td>Juliette</td>
<td>ITA (IR1)</td>
<td></td>
</tr>
<tr>
<td>KHATIR</td>
<td>Zoubir</td>
<td>Chercheur (DR1)</td>
<td></td>
</tr>
<tr>
<td>KOCINIEWSKI</td>
<td>Thierry</td>
<td>Ens-Chercheur (MCF)</td>
<td></td>
</tr>
<tr>
<td>LALLEMAND</td>
<td>Richard</td>
<td>Chercheur (CR1)</td>
<td></td>
</tr>
<tr>
<td>OUSTEN</td>
<td>Jean-Pierre</td>
<td>ITA (IE1)</td>
<td></td>
</tr>
<tr>
<td>RAJARAVISHANKAR</td>
<td>Nandhini</td>
<td>ITA (T)</td>
<td></td>
</tr>
<tr>
<td>VULTURESCU</td>
<td>Bogdan</td>
<td>Chercheur (CR1)</td>
<td></td>
</tr>
</tbody>
</table>
Partie F - Annexes prospective d'intégration d'ACCIS

F 1. Décision du conseil de laboratoire

SATIE

Objet : Demande d’intégration d’ACCIS au laboratoire SATIE

Après examen de la demande d’intégration de l’équipe ACCIS au sein du laboratoire SATIE, le conseil de laboratoire réuni ce jour a approuvé à l’unanimité les dispositions suivantes :

L’intégration complète des enseignants chercheurs d’ACCIS est envisagée mais ne peut pas être immédiate compte tenu du délai nécessaire à l’élaboration d’un projet d’intégration pertinent.

Le conseil de laboratoire propose donc une période d’intégration démarrant au plus tard le 1er Janvier 2014 et durant un maximum de deux années. Au terme de cette période un tel projet d’intégration élaboré conjointement pourra être soumis au CNRS et aux tutelles.

Dans le cas d’un retour favorable des tutelles, les personnels d’ACCIS impliqués dans le projet d’intégration seront alors intégrés dans le laboratoire.

Afin de conforter et d’accompagner les membres d’ACCIS dans cette démarche, nous demandons aux tutelles de leur offrir provisoirement un statut de rattachement adapté.

Fait pour valoir ce que de droit,

Pascal Larzahal
Directeur du laboratoire SATIE

Cachan le 28 juin 2013
F 2. Éléments de prospective commune pour une démarche d'intégration à SATIE

Le présent document retrace les Éléments de prospective pour une démarche d'intégration à SATIE. Ce document est écrit en préalable à une question qui va être débattue en conseil du laboratoire SATIE. Il s’articule comme suit :

F 2.1. La démarche d'intégration

Le département Systèmes Autonomes du laboratoire IEF a officiellement fait une demande d’intégration au sein du laboratoire SATIE au cours du conseil de laboratoire du vendredi 17 mai avec le soutien de ses tutelles, l’université Paris Sud et l’INSIS-CNRS. Les chercheurs du département Systèmes Autonomes ont fait deux présentations de leurs activités de recherche au bâtiment d’Alembert. Le conseil scientifique de SATIE s’est réuni le mercredi 5 juin. Globalement, l’avis émis est le suivant :

Un certain nombre de chercheurs est convaincu que l’arrivée des chercheurs de l’équipe Systèmes Autonomes au sein de SATIE cadre bien avec le projet scientifique de SATIE.

Mais le délai est trop court pour construire un bon projet scientifique et l’inclure dans le document pour le quadriennal suivant avec un dépôt en octobre 2013. SATIE sort d’une intégration pour laquelle le projet a muri durant plus de deux ans.

Il faut imaginer une solution transitoire pour se donner le temps de construire un projet d’intégration. La solution proposée pourrait être un hébergement en tant qu’équipe conventionnée avec le laboratoire SATIE. La convention pourrait prendre effet le 1er janvier 2014 pour une période de deux ans par exemple.

D’un commun accord, la direction de SATIE, la direction de l’IEF et de l’université Paris Sud, le département Systèmes Autonomes proposent de s’engager dans cette voie. Pascal Larzabal se propose d’inscrire une question sur l’acceptation de cette démarche d’intégration à son prochain conseil de laboratoire. Pour accompagner la réflexion des membres du conseil de laboratoire de SATIE, ce document a été rédigé avec pour objectif de lister des potentialités de collaboration entre les deux parties. Il est de fruit de l’état actuel des réflexions, et est sujet à évolution.

Ce document sera accompagné du document bilan du département Systèmes Autonomes en préparation pour évaluation de l’IEF par l’AERES après un avis favorable du directeur André de Lustrac.

F 2.2. Éléments de prospective commune

F 2.2.a. Action : Systèmes Autonomes - MOSS

Estimation

L’estimation d’une grandeur qu’elle soit physique ou sémantique, thème présent à la fois chez SATIE et Systèmes Autonomes, requiert l’inversion de données. Mais les données sont intrinsèquement incomplètes, imprécises et non complètement fiables. L’utilisation de la redondance et de la complémentarité permet alors d’affiner (e.g. en levant les ambiguïtés ou imprécisions) et de robustifier (e.g. en filtrant des données aberrantes) les estimations.

SATIE s’intéresse aux méthodes d’estimation basées sur des modèles probabilistes ou des approches ensemblistes, et Systèmes Autonomes s’intéresse (notamment) aux méthodes d’estimation basées sur des approches ensemblistes (dont l’analyse par intervalles) ou des approches crédibilistes. Dans cette actions nous nous proposons d’explorer les complémentarités entre ces approches, par exemple du point de vue de la modélisation des informations à priori et/ou du point de vue de la propagation des contraintes et des informations.

En conclusion, cette action correspondrait à une thématique de recherche déjà présente à SATIE et dans l’équipe Systèmes Autonomes, et permettrait donc de renforcer le nombre de chercheurs sur cette activité.

F 2.2.b. Action : Systèmes Autonomes - II (imagerie)

a. Traitement d’image multiphysique

Nous proposons d’investiguer le lien entre les paramètres de forme extraits d’une image ou d’une séquence d’images multiphysique (e.g. images de champ magnétique issues d’une mesure par imagerie à courant de Foucault) et les paramètres d’intérêts de la structure examinée. Si un lien il existe, nous étudierons une approche permettant de les extraire de façon robuste, par exemple à base de projection dans un espace cumulatif adéquat.
Des applications directes concernant l’Evaluation Non Destructive (END) peuvent être envisagées par exemple en tomographie pour détecter des fissures calibrées (en longueur en hauteur et/ou profondeur d'enfouissement) dans une plaque en alliage d'aluminium aéronautique, et/ou pour la caractérisation de matériaux.

En conclusion, cette action permettrait d’inscrire une action transverse 61-63 en diversifiant le panel des traitements utilisés en imagerie multiphysique.

⇒ Soulignons que la compétence apportée en Traitement d’images s’inscrirait en cohérence avec le poste PR61 obtenu cette année à SATIE, et d’autres actions (traitement d’images issues d’imagerie cellulaire, RMN) pourraient être prospectées en direction du LBPA de l’Institut d’Alembert (IDA)

F 2.2.c. Action : Systèmes Autonomes - SETE / II (instrumentation)

a. Co-design et optimisation d’architecture / conditionnement

Le département Systèmes Autonomes a une compétence en conception d’architectures, en prenant en considération les aspects système, pour des applications embarquées dites temps-réel dans une démarche A3. La conception des systèmes embarqués devient de plus en plus complexe en raison de l’augmentation de la complexité des algorithmes utilisés et de la nature des domaines d’applications. Une solution pour gérer cette complexité est de concevoir ou utiliser des architectures numériques offrant des grandes puissances de calculs et des faibles consommations d’énergie.

Les architectures reconfigurables de type FPGA deviennent des cibles adaptées pour l’implantation des algorithmes complexes grâce aux dernières avancées technologiques comme nous venons de le démontrer récemment dans plusieurs applications notamment des applications de type SLAM et CND. Le parallélisme inhérent de ces plateformes reconfigurables permet de réduire les temps de calcul malgré la complexité des algorithmes à implanter. Ceci permet d’avoir des temps d’exécution très courts et d’intégrer sur une unique cible plusieurs briques logicielles communicantes assurant différentes fonctionnalités.

La conception de systèmes basée sur ces architectures hétérogènes est une autre voie et s’appuie sur une méthodologie A3 pour répondre à certaines questions fortement dépendantes :

- Quel découpage fonctionnel algorithmique faut-il pour une implémentation adéquate ?
- Architecture homogène ou hétérogène ? (selon les blocs fonctionnels à définir)
- Choix d’une architecture (RISC, ManyCore) ? ou conception d’une architecture dédiée FPGA ?

Ces calculateurs (hétérogènes, multi-cœurs) permettent d’accélérer considérablement le calcul mais nécessitent de repenser ces algorithmes en parallélisant les traitements associés et en appliquant des techniques d’optimisation logicielles de type SIMD (Single Instruction on Multiple Data) et OpenMP (Open Multi-Processing). Cette étape primordiale nécessite une maîtrise du processus de développement et une compétence approfondie sur l’adéquation algorithme architecture.

SATIE développe depuis plusieurs années des travaux sur la conception, la commande et le diagnostic des systèmes de conversion d’énergie électrique pour des applications tel que la traction électrique, l’auto-production d’énergie renouvelable. Plusieurs chercheurs ont une activité de diagnostic et de contrôle à base de cible de type System On Chip FPGA.

Il existe une difficulté réelle à instancier des modèles de contrôle/commande sur des architectures matérielles réalistes par rapport aux multiples contraintes d’embarquabilité (puissance de calcul, énergie, temps réel, …). Les solutions compactes et performantes basées sur les nouvelles plateformes hétérogènes combinent le traitement logiciel, le traitement matériel dans un même composant - System on Chip (SoC). Il est possible aussi de développer des commandes plus performantes en s’appuyant sur les capacités des FPGA.

Bien que partiellement redondantes (méthodologie A3 et co-design) , les activités sont aussi complémentaires dans la mesure où le développement de commande sur des cibles FPGA va se situer à deux niveaux : les capacités des nouvelles architectures de FPGA offrent des rapidités inégales conduisant à des commandes et régulations plus performantes s’appuyant sur la prise en compte de la physique des processus ; les capacités des architectures hétérogènes combinent traitement analogique, traitement numérique et traitement logiciel autorisant l’implantation de techniques de diagnostic ou des techniques de suivi adaptatif des paramètres des modèles avec prise en compte d’évolution de contexte ou de vieillissement avec plusieurs échelles de constantes de temps.
En conclusion, cette action correspondrait à une thématique de recherche déjà présente à SATIE et dans l’équipe Systèmes Autonomes, et permettrait donc de renforcer le nombre de chercheurs sur cette activité, et de l’élargir aux systèmes d’instrumentation multi-physique.

F 2.2.d. Action : Systèmes Autonomes - SETE

a. Banc d’essai

Un sujet de collaboration entre SETE et Systèmes Autonomes concerne la mise en place de bancs d’essais communs destinés à la caractérisation des systèmes de transports. Pour l’équipe SETE, le besoin d’un banc automatisé comportant un émulateur de charge type véhicule découle de celui de valider des optimisations de composants embarqués et fonctionnant selon des cycles prédéfinis. Un banc dynamique, équipé par des moyens de mesures performants, nous permettra, pour différents scénarios, de mesurer les puissances instantanées et moyennes mais aussi toutes les autres grandeurs électriques et mécaniques (tensions, courants, couples, accélérations...) et enfin, les variations thermiques. Pour « SA », l’automatisation ou l’adjonction de systèmes d’aide à la décision nécessite de prendre en compte les caractéristiques intrinsèques des actionneurs ainsi que leur profil optimal. La prise en compte de l’optimisation énergétique lors de l’usage est une préoccupation nécessaire lorsqu’on traite de véhicules électriques. L’émulation d’actionneurs par calcul numérique va poser des problèmes de puissance de calcul pour effectuer la boucle d’itération du modèle simulant l’actionneur. Ce temps de calcul de l’itération devra être suffisamment fin pour avoir un rendu temps réel du comportement de l’actionneur (par rapport aux fréquences des acquisitions capteurs).

En conclusion, cette action correspondrait à la mutualisation d’un équipement et une vitrine pour SATIE comme pour l’équipe Systèmes Autonomes.

b. Health monitoring

Le SATIE travaille sur la sûreté de fonctionnement des machines électriques non-conventionnelles embarquées par le biais de la conception. Il cherche essentiellement à conceptualiser la relation entre le principe de fonctionnement, la géométrie ou aussi la nature des matériaux de la machine et sa sûreté de fonctionnement afin d’optimiser ensuite la structure électromécanique en ajoutant, aux critères classiques, celui de la disponibilité et de la fiabilité, de la possibilité de fonctionnement en mode dégradé. Sur les aspects commande en mode dégradé, il travaille sur l’établissement de modèles fins tenant compte des éventuelles dégradations. Ces modèles concernent les modifications apportées sur les inductances, les pertes fer, l’échauffement, le couple, … Grâce à des modèles adaptés aux cas de pannes, la commande pourra être reconfigurée d’une façon plus optimale. La surveillance de l’état de santé permettrait de diagnostiquer l’avènement et la localisation des pannes. Ces pannes peuvent être de plusieurs types : Ouverture ou court-circuit d’une ou de plusieurs phases, détérioration d’un ou de plusieurs aimants, défauts mécaniques (roullements, décentrage du rotor...), détérioration ou simplement dérèglement d’un ou de plusieurs capteurs de courants, de vitesse, de position. Détecter le défaut ou le localiser nécessite une connaissance fine du fonctionnement des machines. Mais cette connaissance peut s’avérer insuffisante car plusieurs pannes peuvent avoir la même influence sur les grandeurs mesurées. Cette difficulté peut s’accentuer en cas de machines à grands nombres de phases et/ou grands nombres d’aimants alors que souvent, nous augmentons ces nombres dans l’objectif d’améliorer la disponibilité de la machine.

Le diagnostique à faire a donc les caractéristiques suivantes : les sources d’information sont partiellement ambigües (plusieurs pannes peuvent avoir la même influence sur les grandeurs mesurées), il existe une source qui décrit éventuellement de manière imprécise le bon fonctionnement de la machine. L’imprécision citée nous conduit à envisager une approche à base de fonctions de croyances, et l’existence d’une source référence nous conduit à envisager de baser le diagnostique ‘bon/mauvais fonctionnement’ sur une mesure de conflit par rapport à cette dernière. Un diagnostique plus fin du défaut nécessite alors d’introduire un espace de discernement avec autant d’hypothèses que de défauts potentiels. Nous proposons alors de travailler sur l’apprentissage des fonctions de croyance associées à cet espace. Cet apprentissage s’appuiera sur des données simulées correspondant à la présence/absence de chacun des défauts. Ayant validé au niveau simulation, l’approche méthodologique pour le diagnostique, il s’agira de la valider sur données réelles dans le cas de dispositifs réels.

En conclusion, cette action correspondrait à une thématique future pour SATIE mais qui s’inscrit dans la continuité des thématiques actuelles. Il s’agit donc d’une action prospective.
F 2.2.e. Action : Systèmes Autonomes - SETE & TN

a. Efficacité énergétique et supervision par systèmes autonomes dans son environnement

Plusieurs pistes de réflexion sont apparues au cours des discussions, concernant des applications de type : Production décentralisée en sites isolés et en bout de ligne, Systèmes nomades, Autoproduction d’énergie renouvelable, Energie Bâtiment.

Si nous nous intéressons au parallèle (potentiel) entre Information et Energie, les questions à adresser sont de type :

- En quoi une information peut-elle être comprise dans un système comme une source d’énergie ?
- En quoi une ressource énergétique peut-elle être comprise comme une source d’information ?

Du point de vue du niveau contrôle, les deux génèrent une action, leur bouclage permet de réguler une consigne.

Un exemple de couplage est donné par les systèmes nomades. Communiquer coûte de l’énergie. En prévision de pénurie d’énergie, deux solutions sont envisagées, à savoir dégrader la communication pour envoyer juste une alarme ou stocker en attente de contexte plus favorable (borne plus proche ou apport d’énergie). Un autre exemple peut être la conception d’un système de surveillance distribué à base de réseau de capteurs. Un intrus est caractérisé par une piste. Les messages sont routés par les nœuds. Quand la piste évolue, son traitement change de nœud. Quelle est l’information à transmettre de nœud en nœud permettant au pistage de fonctionner correctement tout en optimisant la survie du système en termes d’énergie et de discrétion ? Certaines ressources gourmandes en énergie sont endormies et réveillées par des capteurs et leur unité de calcul associée. Quand faut-il les réveiller et comment mesurer la quantité d’information espérée vis-à-vis d’un coût énergétique ?

En conclusion, cette action correspondrait à une thématique future pour SATIE et Système Autonome mais qui pourrait être fédératrice des deux équipes et des deux pôles de SATIE. Il s’agit donc d’une action très prospective.

F 2.3. Action : Systèmes Autonomes + SIAME avec CSEE

a. ElectroMobilité

Les véhicules électriques sont des systèmes embarqués ayant une autonomie énergétique réduite et pour lesquels les besoins énergétiques concernent le confort, la sécurité et la propulsion. Superviser nécessite une conscience précise de l’autonomie sachant que la consommation de l’énergie embarquée n’est pas prédictible (chauffage, choix malencontreux de chemins énergivores,…) et agit comme une perturbation énergétique (en consommation et en apport) sur le système. Cette information d’autonomie énergétique conditionne le confort et la mobilité au travers de choix d’itinéraires pendant le trajet.

Une nouvelle problématique de recherche apparaît aujourd’hui et traite des techniques pour la conception des Systèmes Avancés d’Aide à l’Eco-conduite (EDAS en anglais, Ecological Driving Assistance Systems). Les EDAS cherchent un compromis entre confort, sécurité et économie d’énergie à partir des mesures fournies par le système embarqué (e.g. niveau d’autonomie, consommation moyenne, charge dans le véhicule,…) et de l’environnement (météo, trafic, cartes topographiques,…).

Le groupe ACCIS possède des compétences en fusion de données, localisation, supervision. Le Pôle CSEE possède des compétences en modélisation, conception et gestion de l’énergie des sources, dispositifs de stockage, métrologie de l’énergie.

Plusieurs études et projets s’intéressent à la conception et l’analyse des systèmes EDAS. Le constat montre un fort impact des systèmes d’aide à la conduite dans la consommation énergétique, par exemple dans les systèmes d’adaptation de vitesse. Certaines stratégies d’eco-conduite impactent la sécurité, par exemple conserver une vitesse de régime est énergétiquement efficace mais peut augmenter le risque de collision.

Dans cette initiative de recherche, la fusion d’informations et la modélisation des imprécisions sur l’état du système, qui ce soit en termes d’énergie ou de conscience interne (fonctionnement des capteurs, actionneurs, etc.) ou externe (contraintes, obstacles pour atteindre l’objectif de la mission) constituent notamment des enjeux scientifiques. Ainsi, nous nous intéressons à l’analyse énergétique d’un système embarqué qui exécute une mission soumise à des perturbations et sur les stratégies d’optimisation permettant d’estimer, en temps réel, l’autonomie du système de manière robuste et précise en vue d’accomplir sa mission. Le système autonome produit et transforme de l’énergie électrique de...
mème qu’il produit et transforme de l’information. Lors de l’accomplissement de sa mission, les contraintes mettent en lumière le transfert entre information et énergie, pour trouver la solution optimale.

En conclusion, cette action correspondrait à une thématique future pour SATIE et Système Autonome mais qui pourrait être centrale et fédéatrice des deux équipes et des deux pôles de SATIE. Il s’agit d’une action prospective.

A noter que cette activité permet d’ancrer davantage le laboratoire régionalement dans l’évolution du plateau de Saclay et la création de l’IEED VeDeCom.